首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two genes encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were localized in human and rat chromosomes. PFKFB1 (previously PFRX), which encodes the liver and muscle isozymes, was assigned to Xq22-q31 in the rat and to Xq27–q28 in the human by in situ hybridization using probes generated by the polymerase chain reaction. PFKFB2, which encodes the heart isozyme of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, was assigned to chromosome 13 in the rat and to chromosome 1 in the human by hybridization of DNA from somatic cell hybrids. By in situ hybridization, this gene was localized to the regions 13q24–25 in the rat and 1q31 in the human.  相似文献   

2.
We report the identification of a human 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase gene (PFKFB3) isolated from a human fetal brain cDNA library. The gene was localized to 10p15-->p14 by fluorescence in situ hybridization. The entire cDNA (4,322 bp) codes for a polypeptide of 520 amino acid residues (molecular weight, 59.571 kDa). Structural analysis showed the presence of a kinase domain located at the amino terminus and a bisphosphatase domain at the carboxy terminus, characteristic of previously described 6-phosphofructo-2-kinase/fructose 2, 6-bisphosphatase isozymes. In addition, a phosphorylation site for cAMP-dependent protein kinase was found at the carboxy terminus. Northern blot analysis showed the presence of a unique 4.8-kb mRNA expressed in the different tissues studied. In mammalian COS-1 cells, this cDNA drives the expression of an active isozyme. Taken together, these results identify the presence of a gene coding for a human 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase isozyme which is ubiquitously expressed.  相似文献   

3.
The hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) plays a crucial role in the progression of cancerous cells by enabling their glycolytic pathways even under severe hypoxic conditions. To understand its structural architecture and to provide a molecular scaffold for the design of new cancer therapeutics, the crystal structure of the human form was determined. The structure at 2.1 A resolution shows that the overall folding and functional dimerization are very similar to those of the liver (PFKFB1) and testis (PFKFB4) forms, as expected from sequence homology. However, in this structure, the N-terminal regulatory domain is revealed for the first time among the PFKFB isoforms. With a beta-hairpin structure, the N terminus interacts with the 2-Pase domain to secure binding of fructose-6-phosphate to the active pocket, slowing down the release of fructose-6-phosphate from the phosphoenzyme intermediate product complex. The C-terminal regulatory domain is mostly disordered, leaving the active pocket of the fructose-2,6-bisphosphatase domain wide open. The active pocket of the 6-phosphofructo-2-kinase domain has a more rigid conformation, allowing independent bindings of substrates, fructose-6-phosphate and ATP, with higher affinities than other isoforms. Intriguingly, the structure shows an EDTA molecule bound to the fructose-6-phosphate site of the 6-phosphofructo-2-kinase active pocket despite its unfavorable liganding concentration, suggesting a high affinity. EDTA is not removable from the site with fructose-6-P alone but is with both ATP and fructose-6-P or with fructose-2,6-bisphosphate. This finding suggests that a molecule in which EDTA is covalently linked to ADP is a good starting molecule for the development of new cancer-therapeutic molecules.  相似文献   

4.
The nature of rat liver protein phosphatases involved in the dephosphorylation of the glycolytic key enzyme 6-phosphofructo-1-kinase and the regulatory enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was investigated. In terms of the classification system proposed by Ingebritsen & Cohen [(1983) Eur. J. Biochem. 132, 255-261], only the type-2 protein phosphatases 2A (which can be separated into 2A1 and 2A2) and 2C act on these substrates. Fractionation of rat liver extracts by anion-exchange chromatography and gel filtration revealed that protein phosphatase 2A is responsible for most of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase phosphatase activity (activity ratio 2A/2C = 4:1). On the other hand, 6-phosphofructo-1-kinase phosphatase activity is equally distributed between protein phosphatases 2A (2A1 plus 2A2) and 2C. In addition, the possible role of low-Mr compounds for the control of purified protein phosphatase 2C was examined. At near-physiological concentrations, none of the metabolites studied significantly affected the rate of dephosphorylation of 6-phosphofructo-1-kinase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, pyruvate kinase or fructose-1,6-bisphosphatase.  相似文献   

5.
In order to ascertain whether the heart and liver forms of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were products of two different genes or arose via alternative splicing of a single gene, the bovine liver cDNA of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a lambda gt10 phage library and its sequence compared with that of bovine heart cDNA. The deduced amino acid sequence of the bovine liver cDNA was also compared with the amino acid sequence of the human and rat liver phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzyme. The bovine liver cDNA codes for a protein that has 81.6% amino acid identity with the bovine heart form and 97.0 and 98.3% identity with the rat and human liver forms of the enzyme, respectively. Comparison of the nucleotide sequences of the two bovine cDNAs and their deduced amino acid sequences demonstrates that while there is conservation of the active sites of liver/muscle and heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases they are encoded by different genes.  相似文献   

6.
7.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

8.
The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

9.
10.
The effects of fasting/refeeding and untreated or insulin-treated diabetes on the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and its mRNA in rat liver were determined. Both enzymatic activities fell to 20% of control values with fasting or streptozotocin-induced diabetes and were coordinately restored to normal within 48 h of refeeding or 24 h of insulin administration. These alterations in enzymatic activities were always mirrored by corresponding changes in amount of enzyme as determined by phosphoenzyme formation and immunoblotting. In contrast, mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase did not decrease during starvation or in diabetes, but there was a 3-6-fold increase upon refeeding a high carbohydrate diet to starved rats or insulin treatment of diabetic rats. The decrease of the enzyme in starved or diabetic rats without associated changes in mRNA levels suggests a decrease in the rate of mRNA translation, an increase in enzyme degradation, or both. The rise in enzyme amount and mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with refeeding and insulin treatment suggests an insulin-dependent stimulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression. Northern blots of RNA from heart, brain, kidney, and skeletal muscle probed with restriction fragments of a full-length cDNA from liver showed that only skeletal muscle contained an RNA species that hybridized to any of the probes. Skeletal muscle mRNA for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was 2.0 kilobase pairs but in contrast to the liver message (2.2 kilobase pairs) was not regulated by refeeding.  相似文献   

11.
12.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

13.
14.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

15.
Whereas moderately increased cellular oxidative stress is supportive for cancerous growth of cells, excessive levels of reactive oxygen species (ROS) are detrimental to their growth and survival. We demonstrated that high ROS levels, via increased oxidized glutathione (GSSG), induce isoform-specific S-glutathionylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) at residue Cys206, which is located near the entrance to the 6-phosphofructo-2-kinase catalytic pocket. Upon this ROS-dependent, reversible, covalent modification, a marked decrease in its catalytic ability to synthesize fructose-2,6-bisphosphate (Fru-2,6-P2), the key glycolysis allosteric activator, was observed. This event was coupled to a decrease in glycolytic flux and an increase in glucose metabolic flux into the pentose phosphate pathway. This shift, in turn, caused an increase in reduced glutathione (GSH) and, ultimately, resulted in ROS detoxification inside HeLa cells. The ability of PFKFB3 to control the Fru-2,6-P2 levels in an ROS-dependent manner allows the PFKFB3-expressing cancer cells to continue energy metabolism with a reduced risk of excessive oxidative stress and, thereby, to support their cell survival and proliferation. This study provides a new insight into the roles of PFKFB3 as switch that senses and controls redox homeostasis in cancer in addition to its role in cancer glycolysis.  相似文献   

16.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

17.
G Paravicini  M Kretschmer 《Biochemistry》1992,31(31):7126-7133
Sequencing of an open reading frame 450 bp downstream from the yeast VPS35 gene revealed a putative peptide of 452 amino acids and 52.7 kDa. The predicted amino acid sequence has 45% identity with the 55-kDa subunit of the 6-phosphofructo-2-kinase/fructose-2,6- bisphosphatase (EC 2.7.1.105/EC 3.1.3.46) from rat liver and 42% identity with 480 amino acids in the center of the recently reported 93.5-kDa subunit of yeast 6-phosphofructo-2-kinase (EC 2.7.1.105). The product of the new yeast gene is similar to the entire sequence of the bifunctional rat liver enzyme and, unlike yeast 6-phosphofructo-2-kinase, has the histidine residue essential for fructose-2,6-bisphosphatase activity. Extracts from a chromosomal null mutant strain, fbp26::HIS3, incubated in the presence of [2-32P]fructose 2,6-P2, lacked in autoradiograms the characteristic 56-kDa labeled band observed in wild-type. The same band was intensified 3-fold over wild-type level with the FBP26 gene introduced on multicopy in the fbp26::HIS3 background. A similar increase was found for fructose-2,6-bisphosphatase activity in the same extracts. The FBP26 gene did not cause detectable increase in 6-phosphofructo-2-kinase activity when introduced on multicopy in a pfk26::LEU2 mutant, indicating that its gene product is predominantly a fructose-2,6-bisphosphatase. Growth on glucose, fructose, galactose, pyruvate, and glycerol/lactate was not impaired in strains carrying the fbp26::HIS3 allele.  相似文献   

18.
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme.  相似文献   

19.
The alpha- and beta-anomers of arabinose 1,5-bisphosphate and ribose 1,5-bisphosphate were tested as effectors of rat liver 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. Both anomers of arabinose 1,5-bisphosphate activated the kinase and inhibited the bisphosphatase. The alpha-anomer was the more effective kinase activator while the beta-anomer was the more potent inhibitor of the bisphosphatase. Inhibition of the bisphosphatase by both anomers was competitive, and both potentiated allosteric inhibition by AMP. beta-Arabinose 1,5-bisphosphate was also more effective in decreasing fructose 2,6-bisphosphate binding to the enzyme. Neither anomer of ribose 1,5-bisphosphate affected 6-phosphofructo-1-kinase or fructose-1,6-bisphosphatase, indicating that the configuration of the C-2 (C-3 in Fru 2,6-P2) hydroxyl group is important for biological activity. These results are also consistent with arabinose 1,5-bisphosphate binding to the active site and thereby enhancing the interaction of AMP with the allosteric site.  相似文献   

20.
M H Rider  D Foret    L Hue 《The Biochemical journal》1985,231(1):193-196
Rat liver and bovine heart 6-phosphofructo-2-kinase were purified by the same procedure. Compared with the liver enzyme, the heart enzyme had a smaller apparent Mr, different kinetic properties, was not inactivated by cyclic AMP-dependent protein kinase, and contained less fructose-2,6-bisphosphatase activity. These differences suggest that heart and liver 6-phosphofructo-2-kinase are distinct isoenzymes. Likewise, 6-phosphofructo-2-kinase from rat heart and skeletal muscle was not inactivated on treatment with cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号