首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A biochemical and structural analysis is presented of fractions that were obtained by a quick and mild solubilization of thylakoid membranes from spinach with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by a partial purification using gel filtration chromatography. The largest fractions consisted of paired, appressed membrane fragments with an average diameter of about 360 nm and contain Photosystem II (PS II) and its associated light-harvesting antenna (LHC II), but virtually no Photosystem I, ATP synthase and cytochrome b 6 f complex. Some of the membranes show a semi-regular ordering of PS II in rows at an average distance of about 26.3 nm, and from a partially disrupted grana membrane fragment we show that the supercomplexes of PS II and LHC II represent the basic structural unit of PS II in the grana membranes. The numbers of free LHC II and PS II core complexes were very high and very low, respectively. The other macromolecular complexes of the thylakoid membrane occurred almost exclusively in dispersed forms. Photosystem I was observed in monomeric or multimeric PS I-200 complexes and there are no indications for free LHC I complexes. An extensive analysis by electron microscopy and image analysis of the CF0F1 ATP synthase complex suggests locations of the δ (on top of the F1 headpiece) and ∈ subunits (in the central stalk) and reveals that in a substantial part of the complexes the F1 headpiece is bended considerably from the central stalk. This kinking is very likely not an artefact of the isolation procedure and may represent the complex in its inactive, oxidized form. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A cytochrome b 6 f deficient mutant of Lemna perpusilla maintains a constant and lower level of the light-harvesting chl a/b-binding protein complex II (LHC II) as compared to the wild type plants at low-light intensities. Inhibition of the plastoquinone pool reduction increases the LHC II content of the mutant at both low- and high-light intensities but only at high-light intensity in the wild type plants. Proteolytic activity against LHC II appears during high-light photoacclimation of wild type plants. However, the acclimative protease is present in the mutant at both light intensities. These and additional results suggest that the plastoquinone redox state serves as the major signal-transducing component in the photoacclimation process affecting both, synthesis and degradation of LHC II and appearance of acclimative LHC II proteolysis. The plastoquinol pool cannot be oxidized by linear electron flow in the mutant plants which are locked in a ‘high light’ acclimation state. The cytochrome b 6 f complex may be involved indirectly in the regulation of photoacclimation via 1) regulation of the plastoquinone redox state; 2) regulation of the redox-controlled thylakoid protein kinase allowing exposure of the dephosphorylated LHC II to acclimative proteolysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Eric Lam  Richard Malkin   《BBA》1982,682(3):378-386
Photoreactions of cytochrome b6 have been studied using resolved chloroplast electron-transfer complexes. In the presence of Photosystem (PS) II and the cytochrome b6-f complex, photoreduction of the cytochrome can be observed. No soluble components are required for this reaction. Cytochrome b6 photoreduction was found to be inhibited by quinone analogs, which inhibit at the Rieske iron-sulfur center of the cytochrome complex, by the addition of ascorbate and by depletion of the Rieske center and bound plastoquinone from the cytochrome complex. Photoreduction of cytochrome b6 can also be demonstrated in the presence of the cytochrome complex and PS I. This photoreduction requires plastocyanin and a low-potential electron donor, such as durohydroquinone. Cytochrome b6 photoreduction in the presence of PS I is inhibited by quinone analogs which interact with the Rieske iron-sulfur center. These results are discussed in terms of a Q-cycle mechanism in which plastosemiquinone serves as the reductant for cytochrome b6 via an oxidant-induced reductive pathway.  相似文献   

4.
Efficient oxygenic photosynthesis not only requires synchronous turover and operation of photosystem I (PS I) and photosystem II (PS II) but also the preferential turnover of PS I for cyclic photophosphorylation to maintain required ATP and NADPH ratio during carbon dioxide reduction. Ohe initial higher rate of turnover of PS IIin viva is accounted by the fact that (i) PS I contains only about one-third of total chlorophylls, (ii) about 90% of light harvesting a/b protein (LAC) which accounts for about 50% of the total chlorophylls, remains associated with PS II as PS II-LHC II complexes (PS IIα and (iii) the ratio of PS II/PS I is always greater than unity, in the range of 1–2 : 1 under different environmental regimes. Ohe initial preferential feeding of PS II, due to its larger antenna, is bound to result in faster rate of turn over of PS II than PS I, leading to higher rate of reduction of an intersystem carrier than the rate of its oxidation by PS I. Ohe light dependent phosphorylation of a ‘mobile’ and small pool (−20%) of LHC II of PS IIα (possibly located at the edge of appressed regions of the membranes) increases the repulsive forces of LHC II resulting in its migration to non-appressed region associating itself with PS 1. Ohe phosphorylation itself is controlled by the redox state of an intermediate of electron transport. Several experimental approaches have provided evidence which suggest that (i) phosphorylation of LAC II involves interaction of cyt b5-f complex with LAC II kinase and the interaction of QA with cyt b5-f complex and (ii) different kinases may be involved in phosphorylation of LHC IIversus PS II polypeptides. Ohe major purpose of light dependent LAC II phosphorylation and its consequent migration close to PS I appears to balance the rate of cyclicversus non-cyclic photophosphorylation. Ohe mechanism by which cyt b5-f complex controls the activation of LAC II is not known. Ohe role of membrane bound ealmodulin, electron transfer through cyt b6-f complex in activation of LAC II kinase should be explored.  相似文献   

5.
Implications of cytochromeb 6/f location for thylakoidal electron transport   总被引:1,自引:0,他引:1  
The cytochromeb 6/f complex of higher plant chloroplasts is uniformly distributed throughout both appressed and nonappressed thylakoids, in contrast to photosystem II and photosystem I, the other major membrane protein complexes involved in electron transport. We discuss how this distribution is likely to affect interactions of the cytochromeb 6/f complex with other electron transport components because of the resulting local stoichiometries, and how these may affect the regulation of electron transport.  相似文献   

6.
Summary The repartition of light-harvesting complex (LHC) and photosystem I (PS I) complex has been examined in isolated plastids ofFucus serratus by immunocytochemical labelling. LHC is distributed equally all along the length of thylakoid membranes, without any special repartition in the appressed membranes of the three associated thylakoids ofFucus. PS I is present on all the thylakoid membranes, but the external membranes of the three associated thylakoids are largely enriched relatively to the inner ones. This specific repartition of PSI on non-appressed membranes can be compared to the localization of PSI on stroma thylakoid membranes of higher plants and green algae. Consequently, although they share some common features with those of higher plants and green algae, the appressions of thylakoids in brown algae has neither the same structure nor the same functional role as typical grana stacked membranes in the repartition of the harvested energy.Abbreviations BSA bovine serum albumin - GAR goat anti-rabbit immunoglobulin G - LHC light-harvesting complex - PBS phosphatebuffered saline - PS I photosystem I - PS II photosystem II  相似文献   

7.
Styrene-maleic acid copolymer was used to effect a non-detergent partial solubilization of thylakoids from spinach. A high density membrane fraction, which was not solubilized by the copolymer, was isolated and was highly enriched in the Photosystem (PS) I-light-harvesting chlorophyll (LHC) II supercomplex and depleted of PS II, the cytochrome b6/f complex, and ATP synthase. The LHC II associated with the supercomplex appeared to be energetically coupled to PS I based on 77 K fluorescence, P700 photooxidation, and PS I electron transport light saturation experiments. The chlorophyll (Chl) a/b ratio of the PS I-LHC II membranes was 3.2 ± 0.9, indicating that on average, three LHC II trimers may associate with each PS I. The implication of these findings within the context of higher plant PS I antenna organization is discussed.  相似文献   

8.
N,N,N,N′-tetramethyl-p-phenylenediamine (TMPD) was previously used to study the kinetics of the OJIP chlorophyll fluorescence rise. The present study is an attempt to elucidate the origin of TMPD-induced delay and quenching of the I–P step of fluorescence rise. For this purpose, we analyzed the kinetics of OJIP rise in thylakoid membranes in which electron transport was modified using ascorbate, methyl viologen (MV), and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). In the absence of TMPD, the OJIP kinetics of fluorescence induction (FI) was not altered by ascorbate. However, ascorbate eliminated the I–P rise delay caused by high concentrations of TMPD. On the other hand, neither ascorbate nor DBMIB, which blocks the electron release from Photosystem II (PS II) at the cytochrome b6/f complex, could prevent the quenching of I–P rise by TMPD. In control thylakoids, MV suppressed the I–P rise of FI by about 60. This latter effect was completely removed if the electron donation to MV was blocked by DBMIB unless TMPD was present. When TMPD intercepted the linear electron flow from PS II, re-oxidation of TMPD by photosystem I (PS I) and reduction of MV fully abolished the I–P rise. The above is in agreement with the fact that TMPD can act as an electron acceptor for PS II. With MV, the active light-driven uptake of O2 during re-oxidation of TMPD by PS I contributes towards an early decline in the I–P step of the OJIP fluorescence rise.  相似文献   

9.
Phosphorylation of the light-harvesting chlorophyll a/b complex II (LHC II) proteins is induced in light via activation of the LHC II kinase by reduction of cytochrome b6f complex in thylakoid membranes. We have recently shown that, besides this activation, the LHC II kinase can be regulated in vitro by a thioredoxin-like component, and H2O2 that inserts an inhibitory loop in the regulation of LHC II protein phosphorylation in the chloroplast. In order to disclose the complex network for LHC II protein phosphorylation in vivo, we studied phosphorylation of LHC II proteins in the leaves of npq1-2 and npq4-1 mutants of Arabidopis thaliana. In comparison to wild-type, these mutants showed reduced non-photochemical quenching and increased excitation pressure of Photosystem II (PS II) under physiological light intensities. Peculiar regulation of LHC II protein phosphorylation was observed in mutant leaves under illumination. The npq4-1 mutant was able to maintain a high amount of phosphorylated LHC II proteins in thylakoid membranes at light intensities that induced inhibition of phosphorylation in wild-type leaves. Light intensity-dependent changes in the level of LHC II protein phosphorylation were smaller in the npq1-2 mutant compared to the wild-type. No significant differences in leaf thickness, dry weight, chlorophyll content, or the amount of LHC II proteins were observed between the two mutant and wild-type lines. We propose that the reduced capacity of the mutant lines to dissipate excess excitation energy induces changes in the production of reactive oxygen species in chloroplasts, which consequently affects the regulation of LHC II protein phosphorylation.  相似文献   

10.
Recent results obtained by electron microscopic and biochemical analyses of greening Chlamydomonas reinhardtii y1 suggest that localized expansion of the plastid envelope is involved in thylakoid biogenesis. Kinetic analyses of the assembly of light-harvesting complexes and development of photosynthetic function when degreened cells of the alga are exposed to light suggest that proteins integrate into membrane at the level of the envelope. Current information, therefore, supports the earlier conclussion that the chloroplast envelope is a major biogenic structure, from which thylakoid membranes emerge. Chloroplast development in Chlamydomonas provides unique opportunities to examine in detail the biogenesis of thylakoids.Abbreviations Rubisco ribulose bisphosphate carboxylase/oxygenase - CAB Chl a/b-binding (proteins) - Chlide chlorophyllide - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - Pchlide protochlorophyllide  相似文献   

11.
Summary iserum against two polypeptides of the major fucoxanthin-chlorophylla/c light-harvesting complex of the diatomPhaeodactylum tricornutum and heterologous antiserum against purified photosystem I particles of maize were used to localize these two complexes on the thylakoid membranes ofP. tricornutum. As in many chromophyte algae, the thylakoids are loosely appressed and organized into extended bands of three, giving a ratio of 21 for appressed versus non-appressed membranes. Immunoelectron microscopy demonstrated that the fucoxanthin-chlorophylla/c light-harvesting complex, which is believed to be associated with photosystem II, was equally distributed on the appressed and non-appressed thylakoid membranes. Photosystem I was also found on both types of membranes, but was slightly more concentrated on the two outer non-appressed membranes of each band. Similarly, photosystem I activity, as measured by the photooxidation of 3,3-diaminobenzidine, was higher in the outer thylakoids than in the central thylakoid of each band. We conclude that the thylakoids of diatoms differ from those of green algae and higher plants in their macromolecular organization as well as in their morphological arrangement.Abbreviations BSA bovine serum albumin - DAB 3,3-diaminobenzidine - FCPC fucoxanthin-chlorophylla/c light-harvesting complex - LHC light-harvesting complex - PBS phosphate-buffered saline - PS photosystem  相似文献   

12.
This paper reports the results of research on the interaction between the cytochrome f of the active cytochrome b 6 f complex (incubated with Cd-, Zn-, and Ag-substituted plastocyanins) and Cu-plastocyanin. The presented studies show, that the metal derivatives of plastocyanin can have an influence on the photosynthetic electron transfer path: cytochrome b 6 f complex — photosystem I. The metal-substituted plastocyanins occupy the plastocyanin electron transfer site of the cytochrome f. The stopped-flow measurements show, that although the metal derivatives of plastocyanin do not influence the rate of cyt f- Pc electron transfer, creation of the non-electron-transfer complexes characterised by a strong binding between the cyt f and substituted plastocyanins and their slow release, dependent on the redox state of the substituted metal, results in the decrease of a turnover of the cytochrome complex. The research was done in the Department of Plant Biochemistry, Freiburg University, Sch?nzlestrasse 1, 79 104 Freiburg, Germany  相似文献   

13.
A non-detergent photosystem II preparation, named BS, has been characterized by countercurrent distribution, light saturation curves, absorption spectra and fluorescence at room and at low temperature (–196°C). The BS fraction is prepared by a sonication-phase partitioning procedure (Svensson P and Albertsson P-Å, Photosynth Res 20: 249–259, 1989) which removes the stroma lamellae and the margins from the grana and leaves the appressed partition region intact in the form of vesicles. These are closed structures of inside-out conformation. They have a chlorophyll a/b ratio of 1.8–2.0, have a high oxygen evolving capacity (295 mol O2 per mg chl h), are depleted in P700 and enriched in the cytochrome b/f complex. They have about 2 Photosystem II reaction centers per 1 cytochrome b/f complex.The plastoquinone pool available for PS II in the BS vesicles is 6–7 quinones per reaction center, about the same as for the whole thylakoid. It is concluded, therefore, that the plastoquinone of the stroma lamellae is not available to the PS II in the grana and that plastoquinone does not act as a long range electron transport shuttler between the grana and stroma lamellae.Compared with Photosystem II particles prepared by detergent (Triton X-100) treatment, the BS vesicles retain more cytochrome b/f complex and are more homogenous in their surface properties, as revealed by countercurrent distribution, and they have a more efficient energy transfer from the antenna pigments to the reaction center.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fv variable fluorescence - LHC light-harvesting complex - PpBQ phenyl-p-benzoquinone - PQ plastoquinone pool - P700 reaction center of PS I - PS I, PS II Photosystem I, II - QA first bound plastoquinone accepter - RC reaction centre  相似文献   

14.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

15.
The possibility of a Photosystem II (PS II) cyclic electron flow via Cyt b-559 catalyzed by carbonylcyanide m-chlorophenylhydrazone (CCCP) was further examined by studying the effects of the PS II electron acceptor 2,6-dichloro-p-benzoquinone (DCBQ) on the light-induced changes of the redox states of Cyt b-559. Addition to barley thylakoids of micromolar concentrations of DCBQ completely inhibited the changes of the absorbance difference corresponding to the photoreduction of Cyt b-559 observed either in the presence of 10 M ferricyanide or after Cyt b-559 photooxidation in the presence of 2 M CCCP. In CCCP-treated thylakoids, the concentration of photooxidized Cyt b-559 decreased as the irradiance of actinic light increased from 2 to 80 W m-2 but remained close to the maximal concentration (0.53 photooxidized Cyt b-559 per photoactive Photosystem II) in the presence of 50 M DCBQ. The stimulation of Cyt b-559 photooxidation in parallel with the inhibition of its photoreduction caused by DCBQ demonstrate that the extent of the light-induced changes of the redox state of Cyt b-559 in the presence of CCCP is determined by the difference between the rates of photooxidation and photoreduction of Cyt b-559 occuring simultaneously in a cyclic electron flow around PS II.We also observed that the Photosystem I electron acceptor methyl viologen (MV) at a concentration of 1 mM barely affected the rate and extent of the light-induced redox changes of Cyt b-559 in the presence of either FeCN or CCCP. Under similar experimental conditions, MV strongly quenched Chl-a fluorescence, suggesting that Cyt b-559 is reduced directly on the reducing side of Photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - CCCP carbonylcyanide-m-chlorophenylhydrazone - DCBQ 2,6-dichloro-p-benzoquinone - FeCN ferricyanide - MV methyl viologen - P680 Photosystem II reaction center Chl-a dimer CIW-DPB publication No. 1118.  相似文献   

16.
The cytochrome b 6 f complex isolated from spinach chloroplast membranes can be resolved into two forms, a monomeric and a dimeric form, by centrifugation on sucrose gradients. The conversion of the dimeric form of the complex into the monomeric form could be prevented by cross-linking with the homobifunctional reagent, dithiobis(succinimidylpropionate) but not by cross-linking with disuccinimidyltartrate or glutaraldehyde. SDS-PAGE analyses of the monomeric and dimeric forms of the cytochrome complex showed the presence of specific cross-linked products in each respective form of the complex. For example, the monomeric form contained a cross-linked product of cytochrome f, cytochrome b 6 f and subunit IV while the dimeric form contained a cross-linked dimer of cytochrome b 6 f. The presence of the former in the isolated cytochrome b 6 f complex prepared by the method of Hurt and Hauska (Eur J Biochem 117: 591–599, 1981) indicates the presence of the monomer in his preparation.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSP dithiobis(succinimidylpropionate) - DST disuccinimidyltartrate  相似文献   

17.
A series of experiments have been conducted with isolated reaction centers of photosystem two (PS II) with the aim to elucidate the functional role of cytochrome (Cyt b 559). At pH 6.5 it was found that Cyt b 559 was reversibly photoreduced by red actinic light when Mn2+ was present as an electron donor while at pH 8.5 a photo-oxidation was observed under the same lighting conditions, which was dark reversible in the presence of hydroquinone. These pH dependent light induced changes were measured under anaerobic conditions and correlated with changes in the relative levels of high (HP) and low (LP) potential forms of the cytochrome. At pH 6.5 the cytochrome was mainly in its LP form while at pH 8.5 a significant proportion was converted to the HP form as detected by dark titrations with hydroquinone. This pH dependent difference in the levels of HP and LP Cyt b 559 was also detected when bright white light was used to monitor the level of the LP form using a novel reaction involving direct electron donation from the flavin of glucose oxidase (present in the medium and used together with glucose and catalase as an oxygen trap). The results suggest that PS II directly oxidises and reduces the HP and LP forms, respectively and that the extent of these photo-reactions is dependent on the relative levels of the two forms, which are in turn governed by the pH. This conclusion is interpreted in terms of the model presented previously (Barber J and De Las Rivas J (1993) Proc Natl Acad Sci USA 90: 10942–10946) whereby the pH induced effect is considered as a possible mechanism by which interconversion of LP and HP forms of Cyt b 559 is achieved. In agreement with this was the finding that as the extent of photo-oxidisable HPCyt b 559 increases, with increasing pH, the rate of irreversible photo-oxidation of -carotene decreases, a result expected if the HP form protects against donor side photoinhibition.Abbreviations -car -carotene - CCCP carbonylcyanide m-chloro-phenylhydrazone - Chl chlorophyll - Cyt b 559 cytochrome b 559 - HPCyt b 559 high potential form of cytochrome b 559 which is reducible by hydroquinone - LPCyt b 559 low potential form of cytochrome b 559 which is non-reducible by hydroquinone - D1 and D2 products of the psbA and psbD genes, respectively - LHC II light-harvesting chlorophyll protein complex associated with PS II - Mes 2-(N-morpholino) ethanesulphonic acid - P680 primary electron donor of PS II - Pheo pheophytin - PQ plastoquinone - PS II Photosystem II - QA first stable quinone electron acceptor of PS II - QB second stable quinone electron acceptor of PS II - RC reaction center - SDS sodium dodecyl sulphate - SiMo silicomolybdate - Tris tris(hydroxymethyl) amino methane - YZ and YD tyrosine residues 161 in D1 and D2 proteins of the PS II RC which act as secondary electron donors to P680  相似文献   

18.
U. Heber  S. Neimanis  K. -J. Dietz 《Planta》1988,173(2):267-274
In order to obtain information on fractional control of photosynthesis by individual catalysts, catalytic activities in photosynthetic electron transport and carbon metabolism were modified by the addition of inhibitors, and the effect on photosynthetic flux was measured using chloroplasts of Spinacia oleracea L. In thylakoids with coupled electron transport, light-limited electron flow to ferricyanide was largely controlled by the QB protein of the electron-transport chain. Fractional control by the cytochrome f/b 6 complex was insignificant under these conditions. Control by the cytochrome f/b 6 complex dominated at high energy fluence rates where the contribution to control of the QB protein was very small. Uncoupling shifted control from the cytochrome f/b 6 complex to the QB protein. Control of electron flow was more complex in assimilating chloroplasts than in thylakoids. The contributions of the cytochrome f/b 6 complex and of the QB protein to control were smaller in intact chloroplasts than in thylakoids. Thus, even though the transit time for an electron through the electron-transport chain may be below 5 ms in leaves, oxidation of plastohydroquinone was only partially responsible for limiting photosynthesis under conditions of light and CO2 saturation. The energy fluence rate influenced control coefficients. Fractional control of photosynthesis by the ATP synthetase, the cytochrome f/b 6 complex and by ribulose-1,5-bisphosphate carboxylase increased with increasing fluence rates, whereas the contributions of the QB protein and of enzymes sensitive to SH-blocking agents decreased. The results show that the burdens of control are borne by several components of the photosynthetic apparatus, and that burdens are shifted as conditions for photosynthesis change.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2,4-dinitro phenylether of 2-iodo-4-nitrothymol - pCMBS p-chloromercuribenzosulfonate  相似文献   

19.
Cyclic electron flow around PSI, or cyclic photophosphorylation, is the photosynthetic process which recycles the reducing equivalents produced by photosystem I in the stroma towards the plastoquinone pool. Through the activity of cytochrome b 6 f, which also transfers protons across the membrane, it promotes the synthesis of ATP. The literature dealing with cyclic electron flow in unicellular algae is far less abundant than it is for plants. However, in the chloroplast of algae such as Chlorella or Chlamydomonas, an efficient carbohydrate catabolism renders the redox poise much more reducing than in plant chloroplasts. It is therefore worthwhile highlighting the specific properties of unicellular algae because cyclic electron flow is highly dependent upon the accumulation of these stromal reducing equivalents. Such an increase of reducing power in the stroma stimulates the reduction of plastoquinones, which is the limiting step of cyclic electron flow. In anaerobic conditions in the dark, this reaction can lead to a fully reduced plastoquinone pool and induce state transitions, the migration of 80% of light harvesting complexes II and 20% of cytochrome b 6 f complex from the PSII-enriched grana to the PSI-enriched lamella. These ultrastructural changes have been proposed to further enhance cyclic electron flow by increasing PSI antenna size, and forming PSI-cyt b 6 f supercomplexes. These hypotheses are discussed in light of recently published data.  相似文献   

20.
Chloroplast transformation of Chlamydomonas reinhardtii has developed into a powerful tool for studying the structure, function and assembly of thylakoid protein complexes in a eukaryotic organism. In this article we review the progress that is being made in the development of procedures for efficient chloroplast transformation. This focuses on the development of selectable markers and the use of Chlamydomonas mutants, individually lacking thylakoid protein complexes, as recipients. Chloroplast transformation has now been used to engineer all four major thylakoid protein complexes, photosystem II, photosystem I, cytochrome b 6/f and ATP synthase. These results are discussed with an emphasis on new insights into assembly and function of these complexes in chloroplasts as compared with their prokaryotic counterparts.Abbreviations ENDOR electron nuclear double resonance - ESEEM electron spin echo envelope modulation - LHC light harvesting complex - PSI Photosystem I - PS II Photosystem II - P680 primary electron donor in PS II - P700 primary electron donor in PS I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号