首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel class of 2H-pyrrolo[3,4-c]pyridazine ligands of the alpha (2) delta subunit of voltage-gated calcium channels is described. Compound 4a with high affinity toward alpha (2) delta was identified through structure-activity relationship studies of the lead compound. Tritiated ligand [(3)H]-4b was synthesized to demonstrate that this ligand binds to the same site as Gabapentin toward alpha (2) delta subunit of voltage-gated calcium channels.  相似文献   

2.
Experiments carried out under the conditions adopted showed the strong affinity of aminopyridazine derivatives for the eicosanoids TXA2 and PGI2. But this affinity depended on the chemical structure of the molecule: a small change in the radical grafted onto the pyridazine ring could completely modify the pharmacological activity of the molecule. Consequently it should be possible to control the properties of pyridazine derivatives according to pharmacological needs. Thus: --pyridazin-3-one derivatives were mainly active on TXA2 biosynthesis: 2-aminoalkyl 5-arylidene 6-methyl (4H) pyridazin-3-ones inhibited the TXA2-synthesizing activity of cardiac tissue whereas 3-amino 4,6-diaryl pyridazin-3-ones were specific inhibitors of the TXA2 synthetase in vitro, but these effects were weak. --pyridazine derivatives were devoid of any effect on the TXA2-synthesizing activity of cardiac tissue: they acted on either TXA2 synthetase or PGI2 synthetase according to the radicals grafted onto the pyridazine ring. --none of the compounds under study was active on the PGI2-synthesizing activity of cardiac tissue.  相似文献   

3.
The stator in F(1)F(o)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(o) and to the alpha(3)beta(3) hexagon of F(1). Previous work has shown that N-terminal residues of alpha subunit are involved in binding delta. A synthetic peptide consisting of the first 22 residues of alpha (alphaN1-22) binds specifically to isolated wild-type delta subunit with 1:1 stoichiometry and high affinity, accounting for a major portion of the binding energy between delta and F(1). Residues alpha6-18 are predicted by secondary structure algorithms and helical wheels to be alpha-helical and amphipathic, and a potential helix capping box occurs at residues alpha3-8. We introduced truncations, deletions, and mutations into alphaN1-22 peptide and examined their effects on binding to the delta subunit. The deletions and mutations were introduced also into the N-terminal region of the uncA (alpha subunit) gene to determine effects on cell growth in vivo and membrane ATP synthase activity in vitro. Effects seen in the peptides were well correlated with those seen in the uncA gene. The results show that, with the possible exception of residues close to the initial Met, all of the alphaN1-22 sequence is required for binding of delta to alpha. Within this sequence, an amphipathic helix seems important. Hydrophobic residues on the predicted nonpolar surface are important for delta binding, namely alphaIle-8, alphaLeu-11, alphaIle-12, alphaIle-16, and alphaPhe-19. Several or all of these residues probably make direct interaction with helices 1 and 5 of delta. The potential capping box sequence per se appeared less important. Impairment of alpha/delta binding brings about functional impairment due to reduced level of assembly of ATP synthase in cells.  相似文献   

4.
The present work delineates pairwise interactions underlying the nanomolar affinity of alpha-conotoxin MI (CTx MI) for the alpha-delta site of the muscle acetylcholine receptor (AChR). We mutated all non-cysteine residues in CTx MI, expressed the alpha(2)betadelta(2) pentameric form of the AChR in 293 human embryonic kidney cells, and measured binding of the mutant toxins by competition against the initial rate of (125)I-alpha-bungarotoxin binding. The CTx MI mutations P6G, A7V, G9S, and Y12T all decrease affinity for alpha(2)betadelta(2) pentamers by 10,000-fold. Side chains at these four positions localize to a restricted region of the known three-dimensional structure of CTx MI. Mutations of the AChR reveal major contributions to CTx MI affinity by Tyr-198 in the alpha subunit and by the selectivity determinants Ser-36, Tyr-113, and Ile-178 in the delta subunit. By using double mutant cycles analysis, we find that Tyr-12 of CTx MI interacts strongly with all three selectivity determinants in the delta subunit and that deltaSer-36 and deltaIle-178 are interdependent in stabilizing Tyr-12. We find additional strong interactions between Gly-9 and Pro-6 in CTx MI and selectivity determinants in the delta subunit, and between Ala-7 and Pro-6 and Tyr-198 in the alpha subunit. The overall results reveal the orientation of CTx MI when bound to the alpha-delta interface and show that primarily hydrophobic interactions stabilize the complex.  相似文献   

5.
The coupling factor, F1-ATPase of Escherichia coli (ECF1) contains five different subunits, alpha, beta, gamma, delta, and epsilon. Properties of delta-deficient ECF1 have previously been described. F1-ATPase containing only the alpha, beta, and gamma subunits was prepared from E. coli by passage of delta-deficient ECF1 through an affinity column containing immobilized antibodies to the epsilon subunit. The delta, epsilon-deficient enzyme has normal ATPase activity but cannot bind to ECF1-depleted membrane vesicles. Both the delta and epsilon subunits are required for the binding of delta, epsilon-deficient ECF1 to membranes and the restoration of oxidative phosphorylation. Either delta or epsilon will bind to the deficient enzyme to form a four-subunit complex. Neither four-subunit enzyme binds to depleted membranes. The epsilon subunit, does, however, slightly improve the binding affinity between delta and delta-deficient enzyme suggesting a possible interaction between the two subunits. Neither subunit binds to trypsin-treated ECF1, which contains only the alpha and beta subunits. A role for gamma in the binding of epsilon to F1 is suggested. epsilon does not bind to ECF1-depleted membranes. Therefore, the in vitro reconstitution of depleted membranes requires an initial complex formation between epsilon and the rest of ECF1 prior to membrane attachment. Reconstitution experiments indicate that only one epsilon is required per functional ECF1 molecule.  相似文献   

6.
1. Five subunits (alpha, beta, gamma, delta, and epsilon) of an ATPase from a thermophilic bacterium PS3 were purified in the presence of 8 M urea by ion exchange chromatography. Then the ATPase activity was reconstituted by mixing the subunit solutions and incubating them at 20-45 degrees, at pH 6.3 to 7.0. 2. Mixtures containing beta + gamma or alpha + beta + delta regained ATP-hydrolyzing activity, but mixtures of alpha + beta and beta + delta did not. Combinations not including beta were all inactive. 3. The ATPase activity reconstituted from alpha + beta + delta was thermolabile and insensitive to NaN3, whereas the activities obtained from mixtures containing beta and gamma were thermostable and sensitive to NaN3, like the native ATPase. 4. The assemblies containing both beta and gamma subunits had the same mobility as the native ATPase molecule on gel electrophoresis, those without the gamma subunit moved more rapidly toward the anode. 5. Subunits epsilon and delta did not inhibit the ATPase activity of either the assembly (alpha + beta + gamma) or the native ATPase.  相似文献   

7.
The distribution and total number of sulfhydryl groups present in the F1 adenosine triphosphatase of Escherichia coli were used to calculate the stoichiometry of the alpha-delta subunits. Titration with 5,5'-dithiobis (2-nitrobenzoate) gave 19.1 +/- 2.2 sulfhydryl groups/mol ATPase. Labeling with [14C]iodoacetamide and [14C]N-ethylmaleimide showed that 11.9, 3.1, 1.9, and 1.8 sulfhydryl groups per molecule of ATPase were associated with the alpha, beta, gamma, and delta subunits, respectively. The epsilon subunit was not labeled. Application of the method of Creighton [Nature (London) (1980) 284, 487-489] showed that 4, 1, and 2 sulfhydryl groups were present in the alpha, beta, and gamma subunits, respectively. This, together with published data for the delta subunit, allowed a subunit stoichiometry of alpha 3 beta 3 gamma delta to be calculated. The presence of four cysteinyl residues in the alpha subunit, as shown by several different methods, does not agree with the results of DNA sequencing of the ATPase genes [H. Kanazawa, T. Kayano, K. Mabuchi, and M. Futai (1981) Biochem. Biophys. Res. Commun. 103, 604-612; N. J. Gay and J. E. Walker (1981) Nucl. Acids Res. 9, 2187-2194] where three cysteinyl residues/alpha subunit have been found. It is suggested that post-translational modification of the alpha subunit to add a fourth cysteinyl residue might occur.  相似文献   

8.
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, was competent in nucleotide binding, and had normal N-terminal sequence. In F1 subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiments showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector.  相似文献   

9.
Voltage-activated calcium channels are transmembrane proteins that act as transducers of electrical signals into numerous intracellular activities. On the basis of their electrophysiological properties they are classified as high- and low-voltage-activated calcium channels. High-voltage-activated calcium channels are heterooligomeric proteins consisting of a pore-forming alpha1 subunit and auxiliary alpha2delta, beta, and--in some tissues--gamma subunits. Auxiliary subunits support the membrane trafficking of the alpha1 subunit and modulate the kinetic properties of the channel. In particular, the alpha2delta subunit has been shown to modify the biophysical and pharmacological properties of the alpha1 subunit. The alpha2delta subunit is posttranslationally cleaved to form disulfide-linked alpha2 and, delta proteins, both of which are heavily glycosylated. Recently it was shown that at least four genes encode for alpha2delta subunits which are expressed in a tissue-specific manner. Their biophysical properties were characterized in coexpression studies with high- and low-voltage-activated calcium channels. Mutations in the gene encoding alpha2delta-2 have been found to underlie the ducky phenotype. This mouse mutant is a model for absence epilepsy and is characterized by spike wave seizures and cerebellar ataxia. Alpha2delta subunits can also support pharmacological interactions with drugs that are used for the treatment of epilepsy and neuropathic pain.  相似文献   

10.
Neuronal and muscle nicotinic acetylcholine receptor subunit combinations expressed in Xenopus oocytes were tested for sensitivity to various neurotoxins. Extensive blockade of the alpha 3 beta 2 neuronal subunit combination was achieved by 10 nM neuronal bungarotoxin. Partial blockade of the alpha 4 beta 2 neuronal and alpha 1 beta 1 gamma delta muscle subunit combinations was caused by 1,000 nM neuronal bungarotoxin. The alpha 2 beta 2 neuronal subunit combination was insensitive to 1,000 nM neuronal bungarotoxin. Nearly complete blockade of all neuronal subunit combinations resulted from incubation with 2 nM neosurugatoxin, whereas 200 nM neosurugatoxin was required for partial blockade of the alpha 1 beta 1 gamma delta muscle subunit combination. The alpha 2 beta 2 and alpha 3 beta 2 neuronal subunit combinations were partially blocked by 10,000 nM lophotoxin analog-1, whereas complete blockade of the alpha 4 beta 2 neuronal and alpha 1 beta 1 gamma delta muscle subunit combinations resulted from incubation with this concentration of lophotoxin analog-1. The alpha 1 beta 1 gamma delta muscle subunit combination was blocked by the alpha-conotoxins G1A and M1 at concentrations of 100 nM. All of the neuronal subunit combinations were insensitive to 10,000 nM of both alpha-conotoxins. Thus, neosurugatoxin and the alpha-conotoxins distinguish between muscle and neuronal subunit combinations, whereas neuronal bungarotoxin and lophotoxin analog-1 distinguish between different neuronal subunit combinations on the basis of differing alpha subunits.  相似文献   

11.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

12.
We have used the mouse alpha (alpha M) and human alpha (alpha H) subunits to investigate the molecular mechanisms of assembly of the mammalian acetylcholine receptor (AChR) transiently expressed in COS cells. COS cells expressing hybrid receptors incorporating alpha H along with other mouse subunits exhibited a 2-fold higher level of surface alpha-bungarotoxin (BuTx) binding than cells expressing the wild-type mouse AChR. When expressed either alone or with the delta subunit in COS cells, alpha H acquired the BuTx binding conformation (alpha Tx) more efficiently than did alpha M. By oligonucleotide-directed mutagenesis we showed that 2 residues in the amino-terminal domain were responsible for the differences between alpha M and alpha H. Alpha MST, the modified mouse alpha subunit, both folded more efficiently to form alpha Tx and was more effective in forming a stable alpha delta heterodimer than was alpha M. The kinetics of alpha Tx and alpha delta heterodimer formation revealed that the delta subunit increased the conversion of immature forms of the alpha subunit into the BuTx binding form and therefore provides evidence for interaction between the delta subunit and the immature form of the alpha subunit. These results provide evidence of the importance of the amino-terminal domains of the AChR subunits in the assembly process.  相似文献   

13.
Clones carrying cDNA sequences for the delta subunit precursor of the acetylcholine receptor from calf skeletal muscle have been isolated. Nucleotide sequence analysis of the cloned cDNA has indicated that this polypeptide consists of 516 amino acids including a hydrophobic prepeptide of 21 amino acids. The delta subunit of the calf muscle acetylcholine receptor, like the alpha, beta and gamma subunits of the same receptor as well as the alpha and gamma subunits of its human counterpart, exhibits structural features common to all four subunits of the Torpedo electroplax receptor, apparently being oriented across the membrane in the same manner as proposed for the fish receptor subunits. The degree of amino acid sequence homology between the calf and Torpedo delta subunits (60%) is comparable to that between the beta subunits (59%) and to that between the gamma subunits (56%), but is lower than that between the alpha subunits of the two species (81%). This suggests that the alpha subunit evolved more slowly than the three other subunits. A dendrogram representing the sequence relatedness among the four subunit precursors of the mammalian and fish acetylcholine receptors has been constructed. Some regions of the delta subunit molecule, including the region containing the putative disulphide bridge and that encompassing the clustered putative transmembrane segments M1, M2 and M3, are relatively well conserved between calf and Torpedo. The relative pattern of regional homology is similar for all four subunit precursors.  相似文献   

14.
The stator in F(1)F(0)-ATP synthase resists strain generated by rotor torque. In Escherichia coli the b(2)delta subunit complex comprises the stator, bound to subunit a in F(0) and to alpha(3)beta(3) hexagon of F(1). Proteolysis and cross-linking had suggested that N-terminal residues of alpha subunit are involved in binding delta. Here we demonstrate that a synthetic peptide consisting of the first 22 residues of alpha ("alpha N1-22") binds specifically to isolated wild-type delta subunit with high affinity (K(d) = 130 nm), accounting for a major portion of the binding energy when delta-depleted F(1) and isolated delta bind together (K(d) = 1.4 nm). Stoichiometry of binding of alpha N1-22 to delta at saturation was 1/1, showing that in intact F(1)F(0)-ATP synthase only one of the three alpha subunits is involved in delta binding. When alpha N1-22 was incubated with delta subunits containing mutations in helices 1 or 5 on the F(1)-binding face of delta, peptide binding was impaired as was binding of delta-depleted F(1). Residues alpha 6-18 are predicted to be helical, and a potential helix capping box occurs at residues alpha 3-8. Circular dichroism measurements showed that alpha N1-22 had significant helical content. Hypothetically a helical region of residues alpha N1-22 packs with helices 1 and 5 on the F(1)-binding face of delta, forming the alpha/delta interface.  相似文献   

15.
Alpha4 is a signal transduction molecule that is required for B cell activation. Alpha4 associates with the catalytic subunit of protein phosphatase 2A (PP2Ac) and regulates its enzymatic activity. We examined the interaction of alpha4/PP2Ac with S6 kinase1 (S6K1) as a potential downstream signal transduction molecule because both alpha4/PP2Ac association and S6K1 activity were rapamycin-sensitive. Stimulation of spleen B cells with lipopolysaccharide induced the interaction of alpha4/PP2Ac and S6K1. Pull-down assay demonstrated that alpha4 interacts with S6K1 through PP2Ac. S6K1 and alpha4 bind to the different regions of PP2Ac as S6K1 to the region from amino acid 88th to 309th of PP2Ac and alpha4 to the two separated regions of the amino-terminal (from amino acid 19th to 22nd) and the middle (from 150th to 164th) portions of PP2Ac. These results suggest that alpha4 regulates S6K1 activity through PP2Ac in B cell activation.  相似文献   

16.
GABA(A) receptors are chloride channels composed of five subunits. Cerebellar granule cells express abundantly six subunits belonging to four subunit classes. These are assembled into a number of distinct receptors, but the regulation of their relative proportions is yet unknown. Here, we studied the composition of cerebellar GABA(A) receptors after targeted disruption of the delta subunit gene. In membranes and extracts of delta-/- cerebellum, [(3)H]muscimol binding was not significantly changed, whereas [(3)H]Ro15-4513 binding was increased by 52% due to an increase in diazepam-insensitive binding. Immunocytochemical and Western blot analysis revealed no change in alpha(6) subunits but an increased expression of gamma(2) subunits in delta-/- cerebellum. Immunoaffinity chromatography of cerebellar extracts indicated there was an increased coassembly of alpha(6) and gamma(2) subunits and that 24% of all receptors in delta-/- cerebellum did not contain a gamma subunit. Because 97% of delta subunits are coassembled with alpha(6) subunits in the cerebellum of wild-type mice, these results indicated that, in delta-/- mice, alpha(6)betagamma(2) and alphabeta receptors replaced delta subunit-containing receptors. The availability of the delta subunit, thus, influences the level of expression or the extent of assembly of the gamma(2) subunit, although these two subunits do not occur in the same receptor.  相似文献   

17.
Expression and membrane localization of an epitope-tagged human Ca(2+) channel alpha(1C) subunit were monitored in Xenopus oocytes by confocal microscopy and electrophysiological recording. When alpha(2)/delta and beta(2a) were separately coexpressed with the alpha(1C) subunit, assessment by confocal microscopy showed an 86 and 225% increase of the channel density, respectively. Simultaneous coexpression of alpha(2)/delta and beta(2a) subunits resulted in a cooperative (470%) increase. Electrophysiological measurements performed in parallel revealed that the current augmentation by the alpha(2)/delta subunit is totally attributable to an increase in channel density, whereas the beta(2a) subunit, in addition to increasing channel density, also facilitates channel opening.  相似文献   

18.
Luo S  McIntosh JM 《Biochemistry》2004,43(21):6656-6662
The embryonic mouse muscle nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel formed by alpha1, beta1, delta, and gamma subunits. The receptor contains two ligand binding sites at alpha/delta and alpha/gamma subunit interfaces. [(3)H]Curare preferentially binds the alpha/gamma interface. We describe the synthesis and properties of a high-affinity iodinated ligand that selectively binds the alpha/delta interface. An analogue of alpha-conotoxin MI was synthesized with an iodine attached to Tyr-12 (iodo-alpha-MI). The analogue potently blocks the fetal mouse muscle subtype of nAChR expressed in Xenopus oocytes. It failed, however, to block alpha3beta4, alpha4beta2, or alpha7 nAChRs. Iodo-alpha-MI potently blocks the alpha1beta1delta but not the alpha1beta1gamma subunit combination expressed in Xenopus oocytes indicating selectivity for the alpha/delta subunit interface. Alpha-conotoxin MI was subsequently radioiodinated, and its properties were further evaluated. Saturation experiments indicate that radioiodinated alpha-conotoxin MI binds to TE671 cell homogenates with a Hill slope of 0.95 +/- 0.0094. Kinetic studies indicate that the binding of [(125)I]alpha-conotoxin MI is reversible (k(off) = 0.084 +/- 0.0045 min(-1)); k(on) is 8.5 x 10(7) min(-1) M(-1). The calculated k(d) is 0.98 nM. This potency is approximately 20-fold higher than the unmodified alpha-MI peptide. Unlike [(125)I]alpha-bungarotoxin, [(125)I]alpha-conotoxin MI binding to TE671 cell homogenates is fully displaceable by the small molecule antagonist d-tubocurarine.  相似文献   

19.
Stargazer mice fail to express the gamma2 isoform of transmembrane alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor regulatory proteins that has been shown to be absolutely required for the trafficking and synaptic targeting of excitatory AMPA receptors in adult murine cerebellar granule cells. Here we show that 30 +/- 6% fewer inhibitory gamma-aminobutyric acid, type A (GABA(A)), receptors were expressed in adult stargazer cerebellum compared with controls because of a specific loss of GABA(A) receptor expression in the cerebellar granule cell layer. Radioligand binding assays allied to in situ immunogold-EM analysis and furosemide-sensitive tonic current estimates revealed that expression of the extrasynaptic (alpha6betaxdelta) alpha6-containing GABA(A) receptor were markedly and selectively reduced in stargazer. These observations were compatible with a marked reduction in expression of GABA(A) receptor alpha6, delta (mature cerebellar granule cell-specific proteins), and beta3 subunit expression in stargazer. The subunit composition of the residual alpha6-containing GABA(A) receptors was unaffected by the stargazer mutation. However, we did find evidence of an approximately 4-fold up-regulation of alpha1betadelta receptors that may compensate for the loss of alpha6-containing GABA(A) receptors. PCR analysis identified a dramatic reduction in the steady-state level of alpha6 mRNA, compatible with alpha6 being the primary target of the stargazer mutation-mediated GABA(A) receptor abnormalities. We propose that some aspects of assembly, trafficking, targeting, and/or expression of extrasynaptic alpha6-containing GABA(A) receptors in cerebellar granule cells are selectively regulated by AMPA receptor-mediated signaling.  相似文献   

20.
We have used mutagenesis to investigate the potential N-glycosylation sites in the delta subunit of the mouse muscle acetylcholine receptor (AChR). Of the three sites, Asn76, Asn143, and Asn169, only the first two were glycosylated when the delta subunit was expressed in COS cells. Because the heterologously expressed delta subunit was similar in its properties to that expressed in C2 muscle cells, the sites of glycosylation are likely to be the same in both cases. In COS cells, mutations of the delta subunit that prevented glycosylation at either of the sites did not change its metabolic stability nor its steady-state level. These results are in contrast to those found previously for the alpha subunit, in which glycosylation at a single site metabolically stabilized the polypeptide (Blount, P., and Merlie, J. P. (1990) J. Cell Biol. 111, 2613-2622). Mutations of the delta subunit that prevented glycosylation, however, decreased its ability to form an alpha delta heterodimer when the alpha and delta subunit were expressed together. When all four subunits of the AChR (alpha, beta, delta, and epsilon) were coexpressed, mutation of the delta subunit to prevent glycosylation resulted in a reduced amount of fully assembled AChR and reduced surface AChR levels, consistent with the role of the heterodimer in the assembly reaction. These results suggest that glycosylation of the delta subunit at both Asn76 and Asn143 is needed for its efficient folding and/or its subsequent interaction with the alpha subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号