首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We investigated the effect of dietary calcium:phosphorus (Ca:P) ratio on bone mineralization and intestinal Ca absorption in ovariectomized (OVX) rat models of osteoporosis and sham-operated rats. Thirty 12-wk-old female Wistar rats were divided into three groups of OVX rats and three groups of sham rats. Thirty days after the adaptation period, OVX rats and sham rats were fed a diet formulated Ca:P, 1:0.5, 1:1 or 1:2 (each diet containing 0.5% Ca), respectively for 42 d. In both sham and OVX rats, serum osteocalcin, a marker of bone turnover, was increased by decreasing Ca:P ratio (1:2). In contrast, rats fed the Ca:P = 1:0.5 diet (dietary P restriction) suppressed the increased serum parathyroid hormone, osteocalcin and urinary deoxypyridinoline, and increased Ca absorption in both sham and OVX rats compared to the Ca:P = 1:1 and 1:2 diets. Especially, in OVX rats, the decreased bone mineral density of the fifth lumbar was also suppressed when rats were fed the Ca:P = 1:0.5 diet. These results indicated that the elevation of dietary Ca:P ratio may inhibit bone loss and increase intestinal Ca absorption in OVX rats.  相似文献   

2.
The acute and chronic effects of whey proteins on calcium metabolism and bone were evaluated. In acute studies, 8-week-old male rats were gavaged with 50 mg whey protein concentrate (WPC) and 25 mg calcium. 45Ca was administered intravenously or orally. Kinetic studies were performed, and femurs were harvested. Four of seven WPCs significantly increased femur uptake of 45Ca compared with controls. One WPC at 50 mg enhanced calcium absorption over a range of calcium intakes from 35.1 +/- 9.4% to 42.4 +/- 14.0% (P < 0.01). Three of the most effective WPCs were tested further in a chronic feeding study. One hundred 3-week-old rats were randomly divided into four adequate dietary calcium (ADC; 0.4% Ca) groups (control of 20% casein and three WPC groups with 1% substitution of casein with each of three WPCs) and two low calcium (LC; 0.2% Ca) groups (control of 20% casein and one WPC group with 1% substitution of casein with one WPC). After 8 weeks, there was no effect of WPCs on femur uptake of 45Ca among ADC groups and there was no effect of WPCs on calcium retention, femur breaking force, femur bone mineral density, or total femur calcium at either dietary calcium intake. However, whole body bone mineral content (BMC) was significantly higher (P < 0.05) in the three whey protein concentrate ADC groups compared with the ADC control group. Total BMC at the proximal tibia in whey protein ADC groups was increased, as shown by peripheral quantitative computed tomography. Our results indicate that the acute calcium absorption-enhancing effect of whey proteins did not persist through long-term feeding in rats. However, the initial enhancement of calcium absorption by whey protein was sufficient to increase BMC.  相似文献   

3.
We investigated the effects of dietary phosphorus (P) intake on the bone mineralization and calcium (Ca) absorption in adult female rats. Fifteen 16-wk-old female Wistar rats were divided into three groups, and respectively fed a low-P diet containing 0.15% P (LP), a control diet containing 0.5% P (C), and a high-P diet containing 1.5% P (HP) for 42 d. The apparent Ca absorption was significantly increased with decreasing dietary P level. The serum parathyroid hormone concentration was significantly lower in the LP group than in the C and HP groups. The serum osteocalcin concentration and urinary excretion of deoxypyridinoline were significantly higher in the HP groups than in the LP and C groups. The bone mineral density of the fifth lumbar vertebra was significantly increased with decreasing dietary P level. These results indicate that the low-P diet increased Ca absorption, this being effective for bone mineralization in adult female rats.  相似文献   

4.
Two experiments in a 2 x 2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n = 14, initial body weight [BW] 36.7 +/- 4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n = 4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p < 0.05). Pigs offered low CP-low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP-low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p < 0.05). In conclusion, offering pigs a high CP-low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.  相似文献   

5.
Adult male rats were maintained on normal (20% casein), protein-free (0% casein), high protein (50% casein), decicient protein (20% zein), and a supplemented, deficient protein (20% zein plus L-lysine and L-tryptophan) diets. Rats on a protein-free diet excreted approximately 1 mg alpha2u/24 h compared with a normal of 10-15 mg/24 h. Depleted rats placed on a 20% casein diet showed a rapid restoration of the normal alpha2u excretion as well as total urinary proteins. Accumulation of alpha2u in the blood serum was measured in nep-rectomized rats. Rats on a 0% casein diet accumulated only 30% of the alpha2u compared to normals. On a 50% casein diet, rats excreted 30-50 mg alpha2u/24 h. However, the accumulation was normal in the serum of nephrectomized rats. A high protein diet did not stimulate alpha2u synthesis but probably increased the renal loss of all urinary proteins. The excretion of alpha2u on a zein diet was reduced to the same degree as with the protein-free diet. Supplementation with lysine and tryptophan restored the capacity to eliminate alpha21 to near normal levels. Accumulation of alpha2u in the serum of nephrectomized rats kept on the zein diets showed that the effect to suppress the synthesis of the ahpha2u. Supplementation restored the biosynthesis of alpha2u. We conclude that the effect of dietary protein on the excretion of urinary proteins in the adult male rat is caused in large part by an influence on the hepatic biosynthesis of alphay2u. The biosynthesis of this protein, which represents approximately 30% of the total urinary proteins, is dependent on an adequate supply of dietary protein.  相似文献   

6.
Two experiments in a 2?×?2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n?=?14, initial body weight [BW] 36.7?±?4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n?=?4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p?<?0.05). Pigs offered low CP–low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP–low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p?<?0.05). In conclusion, offering pigs a high CP–low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.  相似文献   

7.
The effect of a calcium (Ca) and phosphorus (P) depletion and repletion strategy was studied in four consecutive feeding phases of 28 days each. In all, 60 castrated male pigs (14±1.6 kg initial BW) received 60% (low (L) diet; depletion) or 100% (control (C) diet; repletion) of their Ca and digestible P requirements according to six feeding sequences (CCCC, CCCL, CLCC, CCLC, LCLC and LLLL; subsequent letters indicate the diet received in phases 1, 2, 3 and 4, respectively). Pigs bone mineral content in whole-body (BMCb) and lumbar vertebrae L2 to L4 (BMCv) was measured in every feeding phase by dual-energy X-ray absorptiometry. Growth performance was slightly (<10%) affected by depletion, however, dietary treatments did not affect overall growth. Compared with control pigs, depletion reduced BMCb (34%, 38%, 33% and 22%) and BMCv (46%, 54%, 38% and 26%) in phases 1 to 4, respectively. Depletion increased however digestible P retention efficiency from the second to the fourth phases allowing LLLL pigs to present no differences in BMCb and BMCv gain compared with CCCC pigs in phase 4. Growth performance in repleted compared with control pigs was lower in phase 2, was no different in phase 3 and was lower in CLCC pigs in phase 4. Repletion increased body P and Ca retention efficiency when compared with control pigs (respectively, 8% and 10% for LC v. CC, P<0.01; 8% and 10% for CLC v. CCC, P<0.10; 18% and 25% for CLCC, CCLC, LCLC v. CCCC, P<0.001). Moreover, BMCv gain was higher in CLC pigs (P<0.001) and gains of body P, Ca, BMCb and BMCv in phase 4 were also higher in repleted than in CCCC pigs (respectively, 14%, 20%, 20% and 52%; P⩽0.02). Repletion reduced body P, Ca, BMCb and BMCv masses in phase 2 but no differences were found in phase 4 compared with control pigs. Lumbar vertebrae L2 to L4 bone mineral content was more sensitive to depletion and repletion sequences than BMCb especially in the first phase probably due to a higher proportion of metabolically active trabecular bone in vertebrae than in the whole skeleton. Dietary Ca was, however, oversupply in L compared with C diets (3.1 v. 2.5 Ca:digestible P ratio, respectively) suggesting that P has probably driven the regulations. Phosphorus and Ca depletion and repletion increases dietary P utilization efficiency and can help to reduce dietary P supply, but the underlying mechanisms need elucidation before its practical application.  相似文献   

8.
Two experiments, a performance experiment and a mineral balance study, were conducted on grower-finisher pigs (42 to 101 kg live weight) to investigate the effects of Peniophora lycii phytase enzyme and 25-hydroxyvitamin D3 (25-OHD3) on growth performance, carcass characteristics, nutrient retention and excretion, and bone and blood parameters. The two experiments were designed as a 2 × 2 factorial (two levels of phytase and two levels of 25-OHD3). The four diets were T1, low-phosphorous diet; T2, T1 + phytase; T3, T1 + 25-OHD3 and T4, T1 + phytase + 25-OHD3 diet. In all, 25 μg of 25-OHD3 was used to replace 1000 IU of vitamin D3 in diets T3 and T4. Diets were pelleted (70°C) and formulated to contain similar concentrations of energy (13.8 MJ DE/kg), lysine (9.5 g/kg) and digestible phosphorus (P; 1.8 g/kg). Neither the inclusion of phytase nor 25-OHD3 in the diet had any effect on pig performance. There was an interaction between phytase and 25-OHD3 on calcium (Ca) and P retention (P < 0.01) and on the apparent digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.001). Pigs offered phytase diets only, had a higher retention of Ca and P and digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.01) compared with pigs offered unsupplemented diets. However, when the combination of phytase and 25-OHD3 were offered, no effects were detected compared with 25-OHD3 diets only. Pigs fed phytase diets had higher bone ash (P < 0.01), bone P (P < 0.01) and bone Ca (P < 0.05) concentrations compared with pigs offered non-phytase diets. In conclusion, pigs offered phytase diets had a significantly increased bone ash, Ca and P than pigs offered unsupplemented phytase diets. However, there was no advantage to offering a combination of phytase and 25-OHD3 on either bone strength or mineral status compared to offering these feed additives separately.  相似文献   

9.
This study aimed to investigate the effects of a combination of a dairy product fermented by lactobacilli (DFL) and galactooligosaccharides (GOS) on mineral balances in growing rats with hypochlorhydria induced by a proton pump inhibitor (PPI). Three-week-old male rats were assigned to receive one of six diets: a control diet, control diets containing 1.6 or 5.0 % GOS, a DFL diet and DFL diets containing 1.6 or 5.0 % GOS for 9 days. From day 5 of the feeding period, half of the rats fed with control diets were subcutaneously administered with saline, whereas the remaining rats were administered with PPI for 5 days. Calcium (Ca), phosphorus (P), magnesium (Mg), iron (Fe) and zinc (Zn) balances were determined from days 6 to 9. PPI administration significantly decreased the apparent absorption of Ca and Fe and increased urinary P excretion, resulting in decreased Ca, Fe and P retention. GOS dose-dependently increased the apparent absorption of Ca, Mg and Fe and urinary Mg excretion and decreased urinary P excretion. DFL significantly increased the apparent absorption of Ca and Mg and urinary Mg excretion. The combination of DFL and GOS additively affected these parameters, resulting in increased Ca, P and Fe retention, and it further increased the apparent absorption and retention of Zn at 5.0 % GOS. In conclusion, the combination of DFL and GOS improves Ca, P and Fe retention in an additive manner and increases the Zn retention in growing rats with hypochlorhydria induced by PPI.  相似文献   

10.
Dairy products provide abundant, accessible calcium for humans, while some calcium sulfate-rich mineral waters could provide appreciable amounts of calcium. But there is little evidence that this calcium is as available as milk calcium for making bone. The availability of calcium was studied by monitoring bone parameters in 2-month-old pigs fed restricted amounts of calcium (70% RDA) for 2.5 months. The 3 main (> or = 50% Ca intake) Ca sources were either CaCO3 or CaSO4 or skim milk powder (29% of the diet). The bones of the pigs fed the "milk" diet had higher (P < 0.01) ash contents, breaking strength and density (DEXA) than those of the two others groups, in which the bone values were similar. Thus, the calcium provided by a diet containing milk appears to ensure better bone mineralization than do calcium salts included in a non-milk diet. The calcium restriction may have enhanced some milk properties to stimulate calcium absorption in these young, rapidly growing pigs.  相似文献   

11.
The postprandial release of immunoreactive insulin, glucagon, gastrin, somatostatin, pancreatic polypeptide (PP), and gastric inhibitory polypeptide (GIP) was studied in parallel with the absorption of sugars and amino acids in conscious pigs. Six pigs fitted with permanent catheters in the portal vein and arterial blood system as well as within an electromagnetic flow probe around the portal vein received successively at 3-day intervals, three meals of 800 g each containing 0, 14, or 28% protein (semisynthetic diets based on fish protein). Blood samples were collected and portal blood flow was recorded during a postprandial period of 8 h. For the same level of feed intake, an increase in the dietary protein concentration led to a higher alpha-amino nitrogen absorption and to a lower appearance of reducing sugars in the portal vein; in addition, the carbohydrate absorption efficiency (amounts absorbed as a percentage of amounts ingested) was reduced, showing the competition between the absorption of amino acids and glucose. The largest absorption occurred during the first 4 h after the meal, but neither the digestion of proteins nor that of carbohydrates were finished 8 h after the meal since portoarterial differences could still be observed. All test meals induced a rise of portal and peripheral concentrations of insulin, gastrin, somatostatin, and PP, and of the systemic level of GIP. Glucagon increased after the 28% protein meal only. The rise of plasma insulin paralleled that of blood glucose, and bore a significant positive relationship to the systemic GIP level in the early postprandial period. In terms of absolute amounts, portoarterial concentration gradients increased postprandially. Insulin release was significantly the highest after intake of the 14% protein diet. The gastrin response was significantly correlated to the amount of protein. Similarly the release of glucagon and somatostatin tended to increase with increasing dietary amount, but differences failed to reach significance (P less than 0.05), except for glucagon 2 h after the meal. There were very close relationships between the hourly amounts of alpha-amino nitrogen absorbed and gastrin and glucagon production, as between insulin and PP secretions. From the present results, the induction of physiological increments of plasma peptide concentration in 60-kg pigs would require infusion rates of about 50-250 micrograms/h for insulin, 1-4 micrograms/h for gastrin 17, 5-10 micrograms/h for glucagon and somatostatin, and 5-50 micrograms/h for PP.  相似文献   

12.
This study aimed to investigate the impact of dietary calcium (Ca) and phosphorus (P), derived from bone meal, on the feline urine composition and the urinary pH, allowing a risk assessment for the formation of calcium oxalate (CaOx) uroliths in cats. Eight healthy adult cats received 3 canned diets, containing 12.2 (A), 18.5 (B) and 27.0 g Ca/kg dry matter (C) and 16.1 (A), 17.6 (B) and 21.1 g P/kg dry matter (C). Each diet was fed over 17 days. After a 7 dayś adaptation period, urine and faeces were collected over 2×4 days (with a two-day rest between), and blood samples were taken. Urinary and faecal minerals, urinary oxalate (Ox), the urinary pH and the concentrations of serum Ca, phosphate and parathyroid hormone (PTH) were analyzed. Moreover, the urine was microscopically examined for CaOx uroliths. The results demonstrated that increasing levels of dietary Ca led to decreased serum PTH and Ca and increased faecal Ca and P concentrations, but did not affect the urinary Ca or Ox concentrations or the urinary fasting pH. The urinary postprandial pH slightly increased when the diet C was compared to the diet B. No CaOx crystals were detected in the urine of the cats. In conclusion, urinary Ca excretion in cats seems to be widely independent of the dietary Ca levels when Ca is added as bone meal to a typical canned diet, implicating that raw materials with higher contents of bones are of subordinate importance as risk factors for the formation of urinary CaOx crystals.  相似文献   

13.
Both dietary fermentable carbohydrates and the availability of straw bedding potentially affect activity patterns and energy utilisation in pigs. The present study aimed to investigate the combined effects of straw bedding and fermentable carbohydrates (native potato starch) on energy partitioning in growing pigs. In a 2 × 2 factorial arrangement, 16 groups of 12 pigs (approximately 25 kg) were assigned to either barren housing or housing on straw bedding, and to native or pregelatinised potato starch included in the diet. Pigs were fed at approximately 2.5 times maintenance. Nitrogen and energy balances were measured per group during a 7-day experimental period, which was preceded by a 30-day adaptation period. Heat production and physical activity were measured during 9-min intervals. The availability of straw bedding increased both metabolisable energy (ME) intake and total heat production (P < 0.001). Housing conditions did not affect total energy retention, but pigs on straw bedding retained more energy as protein (P < 0.01) and less as fat (P < 0.05) than barren-housed pigs. Average daily gain (P < 0.001), ME intake (P < 0.001) and energy retention (P < 0.01) were lower in pigs on the native potato starch diet compared to those on the pregelatinised potato starch diet. Pigs on the pregelatinised potato starch diet showed larger fluctuations in heat production and respiration quotient over the 24-h cycle than pigs on the native potato starch diet, and a higher activity-related energy expenditure. The effect of dietary starch type on activity-related heat production depended, however, on housing type (P < 0.05). In barren housing, activity-related heat production was less affected by starch type (16.1% and 13.7% of total heat production on the pregelatinised and native potato starch diet, respectively) than in straw-enriched housing (21.1% and 15.0% of the total heat production on the pregelatinised and native potato starch diet, respectively). In conclusion, the present study shows that the availability both of straw bedding and of dietary starch type, fermentable or digestible, affects energy utilisation and physical activity of pigs. The effects of housing condition on protein and fat deposition suggest that environmental enrichment with long straw may result in leaner pigs. The lower energy expenditure on the physical activity of pigs on the native potato starch diet, which was the most obvious in straw-housed pigs, likely reflects a decrease in foraging behaviour related to a more gradual supply of energy from fermentation processes.  相似文献   

14.
Bone mineralization was studied in rats. Animals were divided into three feeding groups: LCP - diet with 13.5% crude protein in DM (5% of gluten, 10% of casein), HCP - diet with 21.2% CP in DM (8% of gluten, 10% of casein), and LSM - diet based on grain meals and meat-bone meal (21% CP in DM). After 28 days feeding, animals were euthanased by cervical dislocation and femur bones were collected, weighed and kept frozen until analyses. Diets with 21% protein (HCP, LSM) significantly increased weight of femur bones. Despite of the substantially higher ash level (7.1%) in the LSM diet than in the LCP diet (3.4%), rats of both groups had the similar bone concentration of Ca (15.7 +/- 1.1 vs. 17.4 +/- 1.1 g/kg) and Zn (178.7 +/- 7.9 vs. 173.0 +/- 8.5 mg/kg). However bone density in LSM rats was significantly higher than in LCP ones. Although rats fed HCP diet had intermediate bone density, the bone concentration of Ca (11.4 +/- 0.5 g/kg) and Zn (145.1 +/- 2.9 mg/kg) was significantly lower, than in animals fed LCP and LSM diets. This was related to the very wide protein/calcium (37:1 g/g) and protein/zinc (5.3:1 g/mg) ratios in HCP diet. Those ratios were narrowest in the LSM diet: 16.2:1 (CP/Ca) and 2.6:1 (CP/Zn). It can be conluded that protein/mineral ratio in a diet is a very important factor in bone development, besides dietary protein and ash contents itselves.  相似文献   

15.
The effect of dietary calcium on the metabolism of iron, zinc, copper, and manganese in male and female rats was investigated. For 3 or 6 weeks the rats were fed three diets containing: (1) 0.26, (2) 0.52, or (3) 2.08% Ca. The apparent absorption of iron was depressed by the high calcium diet, and manganese absorption was highest in the low calcium groups. Generally there was a decrease in the absorption of minerals from 3 to 6 weeks. With an increase in the dietary calcium the absorption of Ca and P decreased. The liver iron concentration in the females fed diet 3 decreased from about 600 to 200 microg/g dry weight. The high calcium intake also caused a slight increase in the heart calcium levels in both sexes. However, diet 3 prevented kidney calcification in the female rats at 6 weeks and this was attributed to a dramatic decrease in the urinary phosphorus, although the calcium had increased about 40 times. In males, on the other hand, the high calcium diet caused some kidney calcification.  相似文献   

16.
The effect of diet calcium on fluoride toxicity in growing rats   总被引:3,自引:0,他引:3  
The effect of dietary Ca in response to fluoride (F) treatment was investigated in rats. Rats were maintained on either adequate (0.5%) or high (2.0%) dietary Ca and given for 5 weeks, NaF in drinking water. The minimum NaF levels that inhibited body growth and reduced survival were 300 mg/L with 0.5% diet Ca and 550 mg/L with 2.0% diet Ca. With these toxic F doses, bone histology showed increased formation surfaces and thickened osteoid seams (osteoid index 6-7%). Fluoride doses 30% below toxic levels (200 and 350 mg/L for 0.5 and 2.0% diet Ca, respectively) had no demonstrable effect on bone. Additional diet Ca reduced F absorption from 76 +/- 3 to 47 +/- 3% for 0.5 and 2.0% diet Ca, respectively. Comparable absorbed doses of F produced comparable effects on bone and body growth but, with additional dietary Ca, these effects were observed with 50% lower serum and bone F levels. Variable response to NaF therapy can be produced in rats by alterations in dietary Ca alone. Results indicate that for clinical treatment the NaF dose needs to be adjusted on an individual basis but neither serum nor bone F levels can be used reliably to establish optimal doses.  相似文献   

17.
Adequate dietary calcium (Ca) intake is essential for bone accretion, peak bone mass (PBM) attainment, bone quality and strength during the mammalian growth period. Severe Ca deficiency during growing age results in secondary hyperparathyroidism (SHPT) and poor bone quality and strength. However, the impact of moderate Ca deficiency during rats early growth period on bone health and the reversibility with supplementing calcium later in adult life remains unclear. Female Sprague-Dawley (SD) rats (postnatal 28th day, P28) were initiated either with a moderate calcium-deficient diet (MCD, 0.25% w/w Ca) or a control diet (0.8% w/w Ca, control group) till P70. Thereafter, MCD rats were continued either with MCD diet or supplemented with calcium diet (0.8% w/w Ca, calcium supplemented group, CaS) till P150. Another group (control rats) were fed 0.8% w/w Ca containing diet from P28 till P150.MCD group, as compared to the control group, had significantly reduced serum ionized Ca and procollagen type 1 N-terminal propeptide (P1NP) at P70 while no significant change was observed in serum corrected Ca, inorganic phosphate (P), alkaline phosphatase (ALP), 25-hydroxy vitamin D [25(OH)D], intact parathyroid hormone (iPTH), and urinary C-terminal telopeptide of collagen 1 (CTX-1), Ca, and P. Femoral and tibial metaphysis in MCD rats had significantly reduced linear growth, cortical and trabecular volumetric BMD (vBMD), trabecular microarchitecture (BV/TV%, trabecular thickness, separation and number, structural model index and connectivity density), cortical thickness, and bone stiffness despite the absence of secondary hyperparathyroidism (SHPT). Continued MCD at P70–P150 results in persistence of compromised bone strength while calcium supplementation (CaS group) improved all the parameters related to bone strength and microarchitecture. Our results indicate that uncorrected moderate/subclinical calcium deficiency in growing rats can result in poor bone quality and strength despite the absence of SHPT. This finding could have relevance in children with poor calcium intake in childhood and adolescence.  相似文献   

18.
Low phosphorus (P) digestibility combined with intensive pig production can increase P diffuse pollution and environmental load. The aim of this paper was to develop a deterministic, dynamic model able to represent P digestion, retention and ultimately excretion in growing and finishing pigs of different genotypes, offered access to diets of different composition. The model represented the limited ability of pig endogenous phytase activity to dephosphorylate phytate as a linear function of dietary calcium (Ca). Phytate dephosphorylation in the stomach by exogenous microbial phytase enzymes was expressed by a first order kinetics relationship. The absorption of non-phytate P from the lumen of the small intestine into the blood stream was set at 0.8 and the dephosphorylated phytate from the large intestine was assumed to be indigestible. The net efficiency of using digested P was set at 0.94 and assumed to be independent of BW, and constant across genotype and sex. P requirements for both maintenance and growth were made simple functions of body protein mass, and hence functions of animal genotype. Undigested P was assumed to be excreted in the feaces in both soluble and insoluble forms. If digestible P exceeded the requirements for P then the excess digestible P was excreted through the urinary flow; thus the model represented both forms of P excretion (soluble and insoluble) into the environment. Using a UK industry standard diet, model behaviour was investigated for its predictions of P digestibility, retention and excretion under different levels of inclusion of microbial phytase and dietary Ca, and different non-phytate P : phytate ratios in the diet, thus covering a broad space of potential diet compositions. Model predictions were consistent with our understanding of P digestion, metabolism and excretion. Uncertainties associated with the underlying assumptions of the model were identified. Their consequences on model predictions, as well as the model evaluation are assessed in a companion paper.  相似文献   

19.
Two feeding experiments were carried out with castrated male pigs weighing between 10 and 30 kg to study acute and persisting dietary effects on growth and on protein and energy metabolism in growing pigs. Pigs were fed semi-synthetic isoenergetic and isonitrogenous diets at 50% protein requirement with either soy protein isolate (SPI) or casein (CAS) as sole protein source. Intake of protein and ME amounted to 9% w/w and 1800 kJ x kg BW (-0.62) x d(-1) in Exp. 1, respectively, and 9% w/w and 1430 kJ x kg BW(-0.62) x d(-1) in Exp. 2. The CAS diet was supplemented by Lys, Met, Thr and Trp. In Exp. 1 (acute effects), 18 pigs received the CAS diet for 24 days (period 1); 9 pigs were then switched to a SPI diet whereas 9 pigs continued on the CAS diet for another 31 days (period 2). In Exp. 2, a third period of 31 days was added in which the SPI group was switched back to CAS diet. The control group was fed on the CAS diet throughout Exp. 2 (86 days). Altogether the majority of parameters were not affected neither comparing SPI with CAS in Exp. 1 nor inspecting possible persistence of effects in Exp. 2. In detail, in Exp. 1 SPI compared to CAS feeding resulted in a lower efficiency of protein utilisation and lower protein retention. Attendant upon the lower protein retention an increased energy retention as fat was only observed in tendency. SPI feeding caused a decreased body weight, thyroid weight and increased hepatic carbohydrate content that persisted after the diet was changed back to CAS (Exp. 2).  相似文献   

20.
The effect of increasing the dietary content of bacterial protein meal (BPM) on protein turnover rate, and on nucleic acid and creatinine metabolism in growing minks and pigs was investigated in two experiments. In each experiment, 16 animals were allocated to four experimental diets. The diets containing no BPM served as controls, i.e. for minks diet M1, for pigs P1; the experimental diets contained increasing levels of BPM to replace fish meal (minks) or soybean meal (pigs), so that up to 17% (P2), 20% (M2), 35% (P3), 40% (M3), 52% (P4), and 60% (M4) of digestible N was BPM derived. Protein turnover rate was measured by means of the end-product method using [15N]glycine as tracer and urinary nitrogen as end-product. In minks, protein flux, synthesis, and breakdown increased significantly with increasing dietary BPM. In pigs, diet had no observed effect on protein turnover rate. The intake of nucleic acid nitrogen (NAN) increased from 0.15 g/kg W0.75 on M1 to 0.26 g/kg W0.75 on M3 and M4 in the mink experiment, and from 0.08 g/kg W0.75 on P1 to 0.33 g/kg W0.75 on P4 in the pig experiment. Increased NAN intake led, in both experiments, to increased allantoin excretion. Analysis of species effects showed that minks excreted 1.72 mmol/ kg W0.75 of allantoin, significantly more than the 0.95 mmol/kg W0.75 excreted by pigs. In minks, approximately 96% of the excreted purine base derivatives consisted of allantoin, whereas in pigs approximately 93% did. Thus, increasing the dietary content of BPM increased protein turnover rate in minks but not in pigs, and allantoin excretion increased with increasing dietary BPM although it seemed that mink decomposed purine bases to their end-product more completely than pigs did. Collectively these data show that BPM is a suitable protein source for pigs and mink, and recorded differences between species were to a large extent due to differences in protein retention capacity and muscle mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号