首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The NAD(P)H:quinone oxidoreductase activity of tobacco leaves is catalyzed by a soluble flavoprotein [NAD(P)H-QR] and membrane-bound forms of the same enzyme. In particular, the activity associated with the plasma membrane cannot be released by hypoosmotic and salt washing of the vesicles, suggesting a specific binding. The products of the plasma-membrane-bound quinone reductase activity are fully reduced hydroquinones rather than semi-quinone radicals. This peculiar kinetic property is common with soluble NAD(P)H-QR, plasma-membrane-bound NAD(P)H:quinone reductase purified from onion roots, and animal DT-diaphorase. These and previous results demonstrate that soluble and plasma-membrane-bound NAD(P)H:quinone reductases are strictly related flavo-dehydrogenases which seem to replace DT-diaphorase in plant tissues. Following purification to homogeneity, the soluble NAD(P)H-QR from tobacco leaves was digested. Nine peptides were sequenced, accounting for about 50% of NAD(P)H-QR amino acid sequence. Although one peptide was found homologous to animal DT-diaphorase and another one to plant monodehydroascorbate reductase, native NAD(P)H-QR does not seem to be structurally similar to any known flavoprotein.Abbreviations MDAR monodehydroascorbate reductase - PM plasma membrane - NAD(P)H-QR NAD(P)H:quinone oxidoreductase - DPI diphenylene iodonium - DQ duroquinone - CoQ2 coenzyme Q2  相似文献   

2.
DT-diaphorase, also referred to as NQO1 or NAD(P)H: quinone acceptor oxidoreductase, is a flavoprotein that catalyzes the two-electron reduction of quinones and quinonoid compounds to hydroquinones, using either NADH or NADPH as the electron donor. NRH (dihydronicotinamide riboside): quinone oxidoreductase, also referred to as NQO2, has a high nucleotide sequence identity to DT-diaphorase and is considered to be an isozyme of DT-diaphorase. These enzymes transfer two electrons to a quinone, resulting in the formation of a hydroquinone product without the accumulation of a dissociated semiquinone. Steady and rapid-reaction kinetic experiments have been performed to determine the reaction mechanism of DT-diaphorase. Furthermore, chimeric and site-directed mutagenesis experiments have been performed to determine the molecular basis of the catalytic differences between the two isozymes and to identify the critical amino acid residues that interact with various inhibitors of the enzymes. In addition, functional studies of a natural occurring mutant Pro-187 to Ser (P187S) have been carried out. Results obtained from these investigations are summarized and discussed.  相似文献   

3.
Takashi Iyanagi  Isao Yamazaki 《BBA》1970,216(2):282-294
The mitochondrial NADH dehydrogenase catalyzes a one-electron reduction of quinones. Semiquinones thus formed have the hyperfine structures of their free anion radicals and are suggested to be detached from the enzyme. In the presence of suitable electron acceptors electron transfer occurs from the semiquinone to the acceptor. The mechanism of quinone reduction by spinach ferredoxin-NADP reductase is the same as that by the NADH dehydrogenase.

On the other hand, the NAD(P)H dehydrogenase (DT-diaphorase) prepared from liver soluble fraction catalyzes a typical two-electron reduction of quinones such as p-benzoquinone and 2-methyl-1,4-naphthoquinone. The mechanisms of one-electron and two-electron reduction of quinones are readily distinguishable by the use of an electron spin resonance spectrometer equipped with a flow apparatus and also by the use of an appropriate set of electron acceptors.

It is concluded that the reduction of quinones and oxygen by flavoproteins falls into three mechanistic categories: one-electron, two-electron and mixed-type reactions.  相似文献   


4.
Giardia lamblia is an amitochondrial protozoan susceptible to oxygen, but the molecular basis for it remains unclear. A Giardia NAD(P)H:menadione oxidoreductase (DT-diaphorase) is known to catalyse a single electron transfer reaction with quinones as the likely two-electron acceptor when oxygen is absent. Here we overexpressed this enzyme in Giardia trophozoites and observed a significantly enhanced susceptibility of the cells towards oxygen. A knock-down of this enzyme resulted, however, in more oxygen-tolerant Giardia cells growing equally well under anaerobic and aerobic conditions. The function of DT-diaphorase could be thus a major, if not the only, cause for the oxygen susceptibility of Giardia. Overexpressed DT-diaphorase is accompanied by increased intracellular hydrogen peroxide. An overexpression of Fe-superoxide dismutase in Giardia led also to a similarly heightened sensitivity to oxygen. Thus, generation of H2O2 from superoxide anion likely produced from DT-diaphorase catalysed reaction using oxygen as electron acceptor may constitute the molecular basis for Giardia susceptibility to oxygen. A functional homologue of DT-diaphorase in Giardia, NADH oxidase, uses oxygen as the preferred electron acceptor and reduces it to water. Overexpression of this enzyme in Giardia resulted in significantly enhanced growth under aerobic conditions. Giardia NADH oxidase could be thus an instrumental enzyme for the organism to adapt to and to tolerate an aerobic living environment.  相似文献   

5.
Cavelier G  Amzel LM 《Proteins》2001,43(4):420-432
NAD(P)H:quinone oxidoreductase type 1 (QR1, NQO1, formerly DT-diaphorase; EC 1.6.99.2) is an FAD-containing enzyme that catalyzes the nicotinamide nucleotide-dependent reduction of quinones, quinoneimines, azo dyes, and nitro groups. Animal cells are protected by QR1 from the toxic and neoplastic effects of quinones and other electrophiles. Alternatively, in tumor cells QR can activate a number of cancer chemotherapeutic agents such as mitomycins and aziridylbenzoquinones. Thus, the same enzyme that protects the organism from the deleterious effects of quinones can activate cytotoxic chemotherapeutic prodrugs and cause cancer cell death. The catalytic mechanism of QR includes an important initial step in which FAD is reduced by NAD(P)H. The unfavorable charge separation that results must be stabilized by the protein. The details of this charge stabilization step are inaccessible to easy experimental verification but can be studied by quantum chemistry methods. Here we report ab initio quantum mechanical calculations in and around the active site of the enzyme that provide information about the fine details of the contribution of the protein to the stabilization of the reduced flavin. The results show that (1) protein interactions provide approximately 2 kcal/mol to stabilize the planar conformation of the reduced flavin isoalloxazine ring observed in the X-ray structure; (2) the charge separation present in the reduced planar form of the flavin is stabilized by interactions with groups of the protein; (3) even after stabilization, the reduction potential of the cofactor remains more negative than that of the free flavin, making it a better reductant for a larger variety of quinones; and (4) the more negative reduction potential may also result in faster kinetics for the quinone reduction step.  相似文献   

6.
In higher plants, NAD(P)H:quinone reductase (NQR) is the only flavoreductase known to reduce quinone substrates directly to hydroquinones by a two-electron reaction mechanism. This enzymatic activity is believed to protect aerobic organisms from the oxidative action of semiquinones. For this reason plant NQR has recently been suggested to be related to animal DT-diaphorase. A cDNA clone for NQR of Arabidopsis thaliana was identified, expressed in Escherichia coli, purified and characterized. Its amino acid sequence was found related to a number of putative proteins, mostly from prokaryotes, with still undetermined function. Conversely, in spite of the functional homology, sequence similarity between plant NQR and animal DT-diaphorase was limited and essentially confined to the flavin binding site.  相似文献   

7.
8.
Mammalian NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2) catalyzes the two-electron reduction of quinones and plays one of the main roles in the bioactivation of quinoidal drugs. In order to understand the enzyme substrate specificity, we have examined the reactions of rat NQO1 with a number of quinones with available potentials of single-electron (E(1)(7)) reduction and pK(a) of their semiquinones. The hydride transfer potentials (E(7)(H(-))) were calculated from the midpoint potentials of quinones and pK(a) of hydroquinones. Our findings imply that benzo- and naphthoquinones with a van der Waals volume (VdWvol) < or = 200 A(3) are much more reactive than glutathionyl-substituted naphthoquinones, polycyclic quinones, and FMN (VdWvol>200 A(3)) with the same reduction potentials. The entropies of activation (DeltaS(not equal)) in the reduction of "fast" oxidants are equal to -84 to -76 J mol(-1) K(-1), whereas in the reduction of "slow" oxidants Delta S(not equal)=-36 to -11 J mol(-1) K(-1). The large negative Delta S(not equal) in the reduction of fast oxidants may be explained by their better electronic coupling with reduced FAD or the formation of charge-transfer complexes, since fast oxidants bind at the dicumarol binding site, whereas the binding of some slow oxidants outside it has been demonstrated. The reactivity of quinones may be equally well described in terms of the three-step (e(-),H(+),e(-)) hydride transfer, using E(1)(7), pK(a)(QH*), and VdWvol as correlation parameters, or in terms of single-step (H(-)) hydride transfer, using E(7)(H(-)) and VdWvol in the correlation. The analysis of NQO1 reactions with single-electron acceptors and quinones using an "outer-sphere" electron transfer model points to the possibility of a three-step hydride transfer.  相似文献   

9.
The cytotoxic effects of many quinones are thought to be mediated through their one-electron reduction to semiquinone radicals, which subsequently enter redox cycles with molecular oxygen to produce active oxygen species and oxidative stress. The two-electron reduction of quinones to diols, mediated by DT-diaphorase (NAD(P)H: (quinone-acceptor) oxidoreductase), may therefore represent a detoxifying pathway which protects the cell from the formation of these reactive intermediates. By using menadione (2-methyl-1,4-naphthoquinone) and isolated hepatocytes, the relative contribution of the two pathways to quinone metabolism has been studied and a protective role for DT-diaphorase demonstrated. Moreover, in the presence of cytotoxic concentrations of menadione rapid changes in intracellular thiol and Ca2+ homeostasis were observed. These were associated with alterations in the surface structure of the hepatocytes which may be an early indication of cytotoxicity.  相似文献   

10.
Flavoenzymes may reduce quinones in a single-electron, mixed single- and two-electron, and two-electron way. The mechanisms of two-electron reduction of quinones are insufficiently understood. To get an insight into the role of flavin semiquinone stability in the regulation of single- vs. two-electron reduction of quinones, we studied the reactions of wild type Anabaena ferredoxin:NADP(+)reductase (FNR) with 48% FAD semiquinone (FADH*) stabilized at the equilibrium (pH 7.0), and its Glu301Ala mutant (8% FADH* at the equilibrium). We found that Glu301Ala substitution does not change the quinone substrate specificity of FNR. However, it confers the mixed single- and two-electron mechanism of quinone reduction (50% single-electron flux), whereas the wild type FNR reduces quinones in a single-electron way. During the oxidation of fully reduced wild type FNR by tetramethyl-1,4-benzoquinone, the first electron transfer (formation of FADH*) is about 40 times faster than the second one (oxidation of FADH*). In contrast, the first and second electron transfer proceeded at similar rates in Glu301Ala FNR. Thus, the change in the quinone reduction mechanism may be explained by the relative increase in the rate of second electron transfer. This enabled us to propose the unified scheme of single-, two- and mixed single- and two-electron reduction of quinones by flavoenzymes with the central role of the stability of flavin/quinone ion-radical pair.  相似文献   

11.
Type II NAD(P)H:quinone oxidoreductases (NDH-2) catalyze the two-electron transfer from NAD(P)H to quinones, without any energy-transducing site. NDH-2 accomplish the turnover of NAD(P)H, regenerating the NAD(P)(+) pool, and may contribute to the generation of a membrane potential through complexes III and IV. These enzymes are usually constituted by a nontransmembrane polypeptide chain of approximately 50 kDa, containing a flavin moiety. There are a few compounds that can prevent their activity, but so far no general specific inhibitor has been assigned to these enzymes. However, they have the common feature of being resistant to the complex I classical inhibitors rotenone, capsaicin, and piericidin A. NDH-2 have particular relevance in yeasts like Saccharomyces cerevisiae and in several prokaryotes, whose respiratory chains are devoid of complex I, in which NDH-2 keep the balance and are the main entry point of electrons into the respiratory chains. Our knowledge of these proteins has expanded in the past decade, as a result of contributions at the biochemical level and the sequencing of the genomes from several organisms. The latter showed that most organisms contain genes that potentially encode NDH-2. An overview of this development is presented, with special emphasis on microbial enzymes and on the identification of three subfamilies of NDH-2.  相似文献   

12.
NAD(P)H:quinone oxidoreductase 1 (NQO1; DT-diaphorase; DTD) is a two-electron reductase that efficiently bioactivates compounds of the quinone family, such as mitomycin C. The observation that DTD is overexpressed in many cancerous tissues compared to normal tissues has provided us with a potentially selective target that can be exploited in the design of novel anticancer agents. Because of the relative lack of information on the cell-specific expression of DTD, the purpose of this study was to perform a body mapping of its normal distribution. Tissue samples from various components of the human reproductive system were analyzed by immunohistochemistry. We found strong expression of this enzyme in testicular stromal cells (Leydig cells) and in the epithelium of epididymis, ductuli efferentes, and Fallopian tube. These results suggest that DTD-bioactivated quinones could be responsible for a selective toxicity on these components of the reproductive system and cause clinical problems due to testosterone deficiency and infertility. This observation needs to be investigated in preclinical evaluation of new anticancer quinones and in patients treated with these compounds. (J Histochem Cytochem 49:1187-1188, 2001)  相似文献   

13.
We aimed to elucidate the role of electronic and structural parameters of nitroaromatic compounds in their two-electron reduction by NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2). The multiparameter regression analysis shows that the reactivity of nitroaromatic compounds (n=38) increases with an increase in their single-electron reduction potential and the torsion angle between nitrogroup(s) and the aromatic ring. The binding efficiency of nitroaromatics in the active center of NQO1 exerted a less evident role in their reactivity. The reduction of nitroaromatics is characterized by more positive entropies of activation than the reduction of quinones. This points to a less efficient electronic coupling of nitroaromatics with the reduced isoalloxazine ring of FAD, and may explain their lower reactivity as compared to quinones. Another important but poorly understood factor enhancing the reactivity of nitroaromatics is their ability to bind at the dicumarol/quinone binding site in the active center of NQO1.  相似文献   

14.
Enterobacter cloacae NAD(P)H:nitroreductase (NR; EC 1.6.99.7) catalyzes two-electron reduction of a series of quinoidal compounds according to a "ping-pong" scheme, with marked substrate inhibition by quinones. The steady-state catalytic constants (k(cat)) range from 0.1 to 1600s(-1), and bimolecular rate constants (k(cat)/K(m)) range from 10(3) to 10(8)M(-1)s(-1). Quinones, nitroaromatic compounds and competitive to NADH inhibitor dicumarol, quench the flavin mononucleotide (FMN) fluorescence of nitroreductase. The reactivity of NR with single-electron acceptors is consistent with an "outer-sphere" electron transfer model, taking into account high potential of FMN semiquinone/FMNH(-) couple and good solvent accessibility of FMN. However, the single-electron acceptor 1,1(')-dibenzyl-4,4(')-bipyridinium was far less reactive than quinones possessing similar single-electron reduction potentials (E(1)(7)). For all quinoidal compounds except 2-hydroxy-1,4-naphthoquinones, there existed parabolic correlations between the log of rate constants of quinone reduction and their E(1)(7) or hydride-transfer potential (E(7)(Q/QH(-))). Based on pH dependence of rate constants, a single-step hydride transfer seems to be a more feasible quinone reduction mechanism. The reactivities of 2-hydroxy-1,4-naphthoquinones were much higher than expected from their reduction potential. Most probably, their enhanced reactivity was determined by their binding at or close to the binding site of NADH and dicumarol, whereas other quinones used the alternative, currently unidentified binding site.  相似文献   

15.
NAD(P)H:quinone oxidoreductase (NQO1; EC 1.6.99.2) catalyzes a two-electron transfer involved in the protection of cells from reactive oxygen species. These reactive oxygen species are often generated by the one-electron reduction of quinones or quinone analogs. We report here on the previously unreported Fe(III) reduction activity of human NQO1. Under steady state conditions with Fe(III) citrate, the apparent Michaelis-Menten constant (Km(app)) was approximately 0.3 nM and the apparent maximum velocity (Vmax(app)) was 16 U mg(-1). Substrate inhibition was observed above 5 nM. NADH was the electron donor, Km(app)= 340 microM and Vmax(app) = 46 Umg(-1). FAD was also a cofactor with a Km(app) of 3.1 microM and Vmax(app) of 89 U mg(-1). The turnover number for NADH oxidation was 25 s(-1). Possible physiological roles of the Fe(III) reduction by this enzyme are discussed.  相似文献   

16.
Flavin electron transferases can catalyze one- or two-electron reduction of quinones including bioreductive antitumor quinones. The recombinant neuronal nitric oxide synthase (nNOS) reductase domain, which contains the FAD-FMN prosthetic group pair and calmodulin-binding site, catalyzed aerobic NADPH-oxidation in the presence of the model quinone compound menadione (MD), including antitumor mitomycin C (Mit C) and adriamycin (Adr). Calcium/calmodulin (Ca2+/CaM) stimulated the NADPH oxidation of these quinones. The MD-mediated NADPH oxidation was inhibited in the presence of NAD(P)H:quinone oxidoreductase (QR), but Mit C- and Adr-mediated NADPH oxidations were not. In anaerobic conditions, cytochrome b5 as a scavenger for the menasemiquinone radical (MD*-) was stoichiometrically reduced by the nNOS reductase domain in the presence of MD, but not of QR. These results indicate that the nNOS reductase domain can catalyze a only one-electron reduction of bivalent quinones. In the presence or absence of Ca2+/CaM, the semiquinone radical species were major intermediates observed during the oxidation of the reduced enzyme by MD, but the fully reduced flavin species did not significantly accumulate under these conditions. Air-stable semiquinone did not react rapidly with MD, but the fully reduced species of both flavins, FAD and FMN, could donate one electron to MD. The intramolecular electron transfer between the two flavins is the rate-limiting step in the catalytic cycle [H. Matsuda, T. Iyanagi, Biochim. Biophys. Acta 1473 (1999) 345-355). These data suggest that the enzyme functions between the 1e- <==> 3e- level during one-electron reduction of MD, and that the rates of quinone reductions are stimulated by a rapid electron exchange between the two flavins in the presence of Ca2+/CaM.  相似文献   

17.
Bacterial nitroreductases are NAD(P)H-dependent flavoenzymes which catalyze the oxygen-insensitive reduction of nitroaromatics, quinones, and riboflavin derivatives. Despite their broad substrate specificity, their reactivity is very specific for two-electron, not one-electron, chemistry. We now describe the thermodynamic properties of the flavin mononucleotide cofactor of Enterobacter cloacae nitroreductase (NR), determined under a variety of solution conditions. The two-electron redox midpoint potential of NR is -190 mV at pH 7.0, and both the pH dependence of the midpoint potential and the optical spectrum of the reduced enzyme indicate that the transition is from neutral oxidized flavin to anionic flavin hydroquinone. The one-electron-reduced semiquinone states of both the free enzyme and an NR-substrate analogue complex are strongly suppressed based on optical spectroscopy and electron paramagnetic resonance measurements. This can explain the oxygen insensitivity of NR and its homologues, as it makes the execution of one-electron chemistry thermodynamically unfavorable. Therefore, we have established a chemical basis for the recent finding that a nitroreductase is a member of the soxRS oxidative defense regulon in Escherichia coli [Liochev, S. I., Hausladen, A., Fridovich, I. (1999) Proc. Natl. Acad. Sci. U.S.A. 96 (7), 3537-3539]. We also report binding affinities for the FMN cofactor in all three oxidation states either determined fluorometrically or calculated using thermodynamic cycles. Thus, we provide a detailed picture of the thermodynamics underlying the unusual activity of NR.  相似文献   

18.
NAD(P)H:quinone oxidoreductase 1 (NQO1; DT-diaphorase; DTD) is a cytosolic two-electron reductase, and compounds of the quinone family such as mitomycin C are efficiently bioactivated by this enzyme. The observation that DT-diaphorase is highly expressed in many cancerous tissues compared to normal tissues has provided us with a potentially selective target that can be exploited in the design of novel anticancer agents. Because of the relative lack of information about the cell-specific expression of DT-diaphorase, the purpose of this study was to map the distribution of this enzyme in normal human tissues. Fifteen tissue samples from normal human kidney were analyzed for expression of DT-diaphorase by immunohistochemistry (two-step indirect method). We found a specific high expression of DT-diaphorase in glomerular visceral epithelial cells (podocytes). These results suggest that a high expression of DT-diaphorase in podocytes could play a major role in the pathogenesis of renal toxicity and mitomycin C-induced hemolytic uremic syndrome, in which injury to the glomerular filtration mechanism is the primary damage, leading to a cascade of deleterious events including microangiopathic hemolytic anemia and thrombocytopenia. This observation has potential therapeutic implications because the DT-diaphorase metabolic pathway is influenced by many agents, including drugs, diet, and environmental cell factors such as pH and oxygen tension.  相似文献   

19.
It was found that when Escherichia coli is grown in the presence of 0.2-0.3 mM menadione (2-methyl-1,4-naphthoquinone), an FMN-dependent NADH-quinone reductase increases more than 20-fold in the cytoplasmic fraction. The menadione-induced quinone reductase was isolated from the cytoplasmic fraction of induced cells. The purified enzyme had an Mr of 24 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme required flavin as a cofactor and a half-maximum activity was obtained with 0.54 microM FMN or 16.5 microM FAD. The enzyme had a broad pH optimum at pH 7.0-8.0 and reacted with NADH, but not with NADPH. The reaction followed a ping-pong mechanism and the intrinsic Km values for NADH and menadione were estimated to be 132 microM and 2.0 microM, respectively. Dicoumarol was a simple competitive inhibitor with respect to NADH with a Ki value of 0.22 microM. The electron acceptor specificity of this enzyme was very similar to that of NAD(P)H: (quinone acceptor) oxidoreductase (EC 1.6.99.2, DT-diaphorase) from rat liver. Since menadione is reduced by the two-electron reduction pathway to menadiol, the induction of this enzyme is likely to be an adaptive response of E. coli to partially alleviate the toxicity of menadione.  相似文献   

20.
DT-diaphorase-catalyzed two-electron reduction of quinone epoxides   总被引:1,自引:0,他引:1  
DT-diaphorase catalyzes the two-electron reduction of the unsubstituted quinone epoxide, 2,3-epoxy-p-benzoquinone, at expense of NAD(P)H with formation of 2-OH-p-benzohydroquinone as the reaction product. The further conversion reactions of 2-OH-p-benzohydroquinone are influenced by the presence of O2 in the medium. Under aerobic conditions, 2-OH-p-benzohydroquinone undergoes autoxidation--probably with formation of 2-OH-semiquinone intermediates--to 2-OH-p-benzoquinone. The latter product is rapidly reduced by DT-diaphorase and, thus, its accumulation can be only observed upon exhaustion of NADPH. Under anaerobic conditions, 2-OH-p-benzohydroquinone does not undergo autoxidation and its accumulation is stoichiometrically (1:1) related to the amount of NADPH oxidized and epoxide substrate reduced. DT-diaphorase also catalyzes the reduction of the disubstituted quinone epoxide, 2,3-dimethyl-2,3-epoxy-1,4-naphthoquinone. Neither the aliphatic epoxide, trans-stilbene oxide, nor the aromatic epoxide, 4,5-epoxy-benzo[a]pyrene are substrates for DT-diaphorase. The reduction of 2,3-epoxy-p-benzoquinone is also catalyzed by the one-electron transfer enzyme, NADPH-cytochrome P450 reductase at a rate similar to that found with DT-diaphorase. However, this reaction differs from that catalyzed by DT-diaphorase in the distribution of molecular products as well as in the relative contribution of nonenzymatic reactions, i.e. semiquinone disproportionation and autoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号