首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Non-infested, young adult honey bees (Apis mellifera L.) of two stocks were exposed to tracheal mites (Acarapis woodi (Rennie)) in infested colonies to determine how divergent levels of susceptibility in host bees differentially affect components of the mite life history. Test bees were retrieved after exposure and dissected to determine whether resistance is founded on the reduced success of gravid female (foundress) mites to enter the host tracheae, on the suppressed reproduction by foundress mites once established in host tracheae or on both. Cohorts of 30–60 bees from each of ten resistant colonies and eight susceptible colonies were tested in eight trials (three to five colonies per stock per trial) having exposure durations of 4, 9 or 21 days. The principal results were that lower percentages of resistant bees than of susceptible bees routinely became infested by foundress mites, individual infested susceptible bees often had more foundress mites than individual infested resistant bees did and mite fecundity was similar in both host types. The infestation percentage results corresponded well with similar results from a prior field test of these stocks and, thus, suggest that the bioassay is useful for assessing honey bee resistance to A. woodi.  相似文献   

2.
Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honeybee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 ± 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 ± 8.4%) and adult bees (3.5 ± 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83–96%) than in AHB in Brazil(25–57%), and similar to that found in EHB (76–94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
This study examined the migration of tracheal mites (Acarapis woodi) into honey bees (Apis mellifera) from different colonies and the relative attraction of mites to hexane extracts from the external body surfaces of young bees. Relative resistance of bees from different colonies initially was assessed with a field bioassay that involved tagging newly emerged bees, pooling them in heavily mite-infested colonies, retrieving them 7 days later, and examining them for tracheal mite prevalence and abundance. For those colonies identified as most resistant and least resistant, cuticular chemicals were extracted in hexane from frozen, newly emerged worker bees. These extracts were presented to individual tracheal mites in pairwise fashion in a laboratory bioassay. The results demonstrated that mites prefer extracts of bees from some colonies more than others, however, no consistent differences were demonstrated. Our inability to predict mite responses to extracts based on our initial assessment of relative resistance indicates that other mechanisms of resistance influence mite success in colonizing new host bees.  相似文献   

4.
Earlier studies showed that Russian honey bees support slow growth of varroa mite population. We studied whether or not comb type influenced varroa reproduction in both Russian and Italian honey bees, and whether Russian bees produced comb which inhibited varroa reproduction. The major differences found in this study concerned honey bee type. Overall, the Russian honey bees had lower (2.44 ± 0.18%) levels of varroa infestation than Italian honey bees (7.20 ± 0.60%). This decreased infestation resulted in part from a reduced number of viable female offspring per foundress in the Russian (0.85 ± 0.04 female) compared to the Italian (1.23 ± 0.04 females) honey bee colonies. In addition, there was an effect by the comb built by the Russian honey bee colonies that reduced varroa reproduction. When comparing combs having Russian or Italian colony origins, Russian honey bee colonies had more non-reproducing foundress mites and fewer viable female offspring in Russian honey bee comb. This difference did not occur in Italian colonies. The age of comb in this study had mixed effects. Older comb produced similar responses for six of the seven varroa infestation parameters measured. In colonies of Italian honey bees, the older comb (2001 dark) had fewer (1.13 ± 0.07 females) viable female offspring per foundress than were found in the 2002 new (1.21 ± 0.06 females) and 1980s new (1.36 ± 0.08 females) combs. This difference did not occur with Russian honey bee colonies where the number of viable female offspring was low in all three types of combs. This study suggests that honey bee type largely influences growth of varroa mite population in a colony.  相似文献   

5.
Movements of the parasitic honey bee mite,Varroa jacobsoni (Oud.) were monitored in several assays as they moved among adult host honey bees,Apis mellifera. We examined the propensity of mites to leave their hosts and to move onto new bee hosts. We also examined their preference for bees of different age and hive function. Mites were standardized by selecting mites from newly emerged worker bees (NEWs). In closed jars, 50% ofVarroa left NEWs irreversibly when no physical path was present for the mites to return to the NEWs; about 90% of mites left newly emerged drones in identical assays. In petri dish arenas, mites were rarely seen off NEW hosts when monitored at 15-min intervals for 4 h; this was the case for single NEWs with one mite (NEWs+) and when a NEW+ and a NEW− (no mites) were placed together in a petri dish. When a NEW+ was held with either a nurse beeor a pollen forager, 25% of the mites moved to the older bees. When both a nurseand a pollen forager were placed in a petri dish with a NEW+, about 50% of the mites transferred to older bees; nurse bees received about 80% of these mites, whereas pollen foragers received significantly fewer mites (about 20%,P < 0.05). Most mite transfers occurred during the first 30 min after combining NEWs+ and test bees. When NEWs+ were combined with bees of known ages, rather than function, mites transferred more often to young bees than to older bees (1- and 5-day-old bees vs. 25-day-old bees,P < 0.05; 1-day-old vs. 13- and 25-day-old bees;P < 0.05). No differences in proportions of transferring mites were seen when the range of bee ages was ≤ 8 days (P > 0.05), implying that the factors mediating the mites’ adult-host preference change gradually with bee age. A possible chemical basis for host choice byVarroa is indicated by their greater propensity to move onto freezer-killed nurse bees than onto freezer-killed pollen foragers (P < 0.05) and by their lower movement onto heat-treated bees than onto control bees (P < 0.05). Bee age, hive function, and directional changes in cuticular chemistry are all correlated. Movements of newly emerged mites in relation to these variables may provide insights into their reproductive success inApis mellifera colonies.  相似文献   

6.
Strips coated with conidia of Metarhizium anisopliae (Metschinkoff; Deuteromycetes: Hyphomycetes) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in colonies of honey bees, Apis mellifera (Hymenoptera: Apidae) were compared against the miticide, tau-fluvalinate (Apistan) in field trials in Texas and Florida (USA). Apistan and the fungal treatments resulted in successful control of mite populations in both locations. At the end of the 42-day period of the experiment in Texas, the number of mites per bee was reduced by 69-fold in bee hives treated with Apistan and 25-fold in hives treated with the fungus; however mite infestations increased by 1.3-fold in the control bee hives. Similarly, the number of mites in sealed brood was 13-fold and 3.6-fold higher in the control bee hives than in those treated with Apistan and with the fungus, respectively. Like the miticide Apistan, the fungal treatments provided a significant reduction of mite populations at the end of the experimental period. The data from the broodless colonies treated with the fungus indicated that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. In established colonies in Florida, honey bee colony development did not increase under either Apistan or fungal treatments at the end of the experimental period, suggesting that other factors (queen health, food source, food availability) play some major role in the growth of bee colonies. Overall, microbial control of Varroa mites with fungal pathogens could be a useful component of an integrated pest management program for the honey bee industry.  相似文献   

7.
Reproduction ofVarroa jacobsoni Oudemans (Acari: Varroidae) and the number ofVarroa mites that were found dead on the bottom board of the hive, were studied in relation to the period the mites spent on adult honey bees,Apis mellifera L. (Hymenoptera: Apidae), prior to invasion into brood cells. The maximum period on adult bees was 23 days. To introduce mites, combs with emerging worker brood, heavily infested with mites, were placed into a colony and removed the next day. At the beginning of the first day following emergence from brood cells, 18% of the mites introduced into the colony was found on the bottom of the hive. Part of these mites may already have died inside the capped brood cells, and then fallen down after cleaning of cells by the bees. At the second and third day following emergence, respectively 4% and 2% of the mites on adult bees at the previous day was recovered on the bottom, whereas from the fourth day on only 0.6% of the mites on adult bees was recovered on the bottom per day. After invasion into brood cells, 8–12% of the mites did not produce any offspring. Of the mites that did reproduce, the total number of offspring was 4.0–4.4 per mite during one reproductive cycle, part of which may reach maturity resulting in 1.2–1.3 viable daughters, and 8–10% of the mites produced only male offspring. Reproduction was independent of the period the mites had spent on adult bees prior to invasion into brood cells.  相似文献   

8.
The reproduction of pyrethroid-resistant Varroa destructor mite, a brood parasite of honey bees, was observed in Weslaco, Texas, and the results compared with known susceptible mite populations from other studies. Seven Apis mellifera colonies that had mite populations resistant to the acaricide Apistan were used. Pyrethroid-resistance was confirmed when only 17% rather than 90% of mites confined in dishes containing Apistan died after 12 h of exposure. The average number of eggs laid by resistant mites invading worker and drone cells was 4.4 and 5.4 respectively. This is similar to the number of eggs laid by susceptible mites in worker (4.4–4.8) or drone (4.7–5.5) cells. Also the average number of fertilised V. destructor female mites produced by resistant mites in worker (1.0) and drone (2.1) cells were similar to the number produced by susceptible mites in worker (0.9) and drone (1.9–2.2) cells. In addition, no major differences between the resistant and susceptible mite populations were observed in either worker or drone cells when six different reproductive categories and offspring mortality rates were compared. Therefore, it appears that there is little or no reproductive fitness cost associated with pyrethroid resistance in V. destructor in Texas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Varroa (Varroa destuctor Anderson and Trueman) populations in honey bee (Apis mellifera L.) colonies might be kept at low levels by well-timed miticide applications. HopGuard® (HG) that contains beta plant acids as the active ingredient was used to reduce mite populations. Schedules for applications of the miticide that could maintain low mite levels were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on defined parameters for efficacy of the miticide and predictions of varroa population growth generated from a mathematical model of honey bee colony–varroa population dynamics. Colonies started from package bees and treated with HG in the package only or with subsequent HG treatments in the summer had 1.2–2.1 mites per 100 bees in August. Untreated controls averaged significantly more mites than treated colonies (3.3 mites per 100 bees). By October, mite populations ranged from 6.3 to 15.0 mites per 100 bees with the lowest mite numbers in colonies treated with HG in August. HG applications in colonies started from splits in April reduced mite populations to 0.12 mites per 100 bees. In September, the treated colonies had significantly fewer mites than the untreated controls. Subsequent HG applications in September that lasted for 3 weeks reduced mite populations to levels in November that were significantly lower than in colonies that were untreated or had an HG treatment that lasted for 1 week. The model accurately predicted colony population growth and varroa levels until the fall when varroa populations measured in colonies established from package bees or splits were much greater than predicted. Possible explanations for the differences between actual and predicted mite populations are discussed.  相似文献   

10.
Worker honey bees from genetic strains selected for being resistant (R) or susceptible (S) to tracheal mites typically show large differences in infestation in field colonies and in bioassays that involve controlled exposure to infested bees. We used bioassays exposing newly emerged individuals to infested workers to compare the propensity for tracheal mites to infest queens, drones and workers from R and S colonies. In tests with queens, newly emerged R and S queens were either simultaneously confined in infested colonies (n = 95 and 87 respectively), or individually caged with groups of 5–20 infested workers (n = 119 and 115 respectively). Mite prevalence (percentage of individuals infested) and abundance (foundress mites per individual) after 4–6 days did not differ between R and S queens. In another test, five newly emerged drones and workers from both an R and an S colony, and a queen of one of the two strains, were caged in each of 38 cages with 20 g of workers infested at 60–96% prevalence. Infestations of the R queens (n = 17) and S queens (n = 19) did not differ significantly, but R workers had half the mite abundance of S workers, while R drones received about a third more migrating mites than S drones. In tests to evaluate possible mechanisms, removal of one mesothoracic leg from R and S workers resulted in 2- to 10-fold increase in mite abundance on the treated side, but excising legs did not affect infestation of the corresponding tracheae in drones. This suggests that differences in infestation between R and S workers, but not drones, are largely determined by their ability to remove mites through autogrooming. If autogrooming is the primary mechanism of colony resistance to tracheal mites, selection for resistance to tracheal mites using infestation of hemizygous drones may be inefficient. *The U.S. Government’s right ot retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

11.
Numerous studies have investigated using oxalic acid (OA) to control Varroa mites in honey bee colonies. In contrast, techniques for treating package bees with OA have not been investigated. The goal of this study was to develop a protocol for using OA to reduce mite infestation in package bees. We made 97 mini packages of Varroa-infested adult bees. Each package contained 1,613 ± 18 bees and 92 ± 3 mites, and represented an experimental unit. We prepared a 2.8% solution of OA by mixing 35 g OA with 1 l of sugar water (sugar:water = 1:1; w:w). Eight treatments were assigned to the packages based on previous laboratory bioassays that characterized the acute contact toxicity of OA to mites and bees. We administered the treatments by spraying the OA solution directly on the bees through the mesh screen cage using a pressurized air brush and quantified mite and bee mortality over a 10-day period. Our results support applying an optimum volume of 3.0 ml of a 2.8% OA solution per 1,000 bees to packages for effective mite control with minimal adult bee mortality. The outcome of our research provides beekeepers and package bee shippers guidance for using OA to reduce mite populations in package bees.  相似文献   

12.
The effects of the tracheal mite Acarapis woodi on the health of honey bees have been neglected since the prevalence of Varroa mites to Apis mellifera colonies. However, tracheal mite infestation of honey bee colonies still occurs worldwide and could impose negative impact on apiculture. The detection of A. woodi requires the dissection of honey bees followed by microscopic observation of the tracheal sacs. We thus developed PCR methods to detect A. woodi. These methods facilitate rapid and sensitive detection of A. woodi in many honey bee samples for epidemiologic surveys.  相似文献   

13.
Africanized honey bees (Apis mellifera, Hymenoptera: Apidae) in Brazil are tolerant of infestations with the exotic ectoparasitic mite, Varroa destructor (Mesostigmata: Varroidae), while the European honey bees used in apiculture throughout most of the world are severely affected. Africanized honey bees are normally kept in hives with both naturally built small width brood cells and with brood cells made from European-sized foundation, yet we know that comb cell size has an effect on varroa reproductive behavior. Three types (sizes) of brood combs were placed in each of six Africanized honey bee colonies: new (self-built) Africanized comb, new Italian comb (that the bees made from Italian-sized commercial foundation), and new Carniolan comb (built naturally by Carniolan bees). About 100 cells of each type were analyzed in each colony. The Africanized comb cells were significantly smaller in (inner) width (4.84 mm) than the European-sized comb cells (5.16 and 5.27 mm for Italian and Carniolan cells, respectively). The brood cell infestation rates (percentage cells infested) were significantly higher in the Carniolan-sized comb cells (19.3%) than in the Italian and Africanized cells (13.9 and 10.3%, respectively). The Carniolan-sized cells also had a significantly larger number of invading adult female mites per 100 brood cells (24.4) than did the Italian-sized cells (17.7) and the natural-sized Africanized worker brood cells (15.6). European-sized worker brood cells were always more infested than the Africanized worker brood cells in the same colony. There was a highly significant correlation (P<0.01) between cell width and the rate of infestation with varroa in four of the six colonies. The small width comb cells produced by Africanized honey bees may have a role in the ability of these bees to tolerate infestations by Varroa destructor, furthermore it appears that natural-sized comb cells are superior to over-sized comb cells for disease resistance.  相似文献   

14.
Two generations of honey bees, Apis mellifera L., selected for resistance to tracheal mites, Acarapis woodi (Rennie), were produced from a foundation stock. The mite resistant lines had significantly low mite abundances and prevalences in each selected generation. The high mite-resistant lines of the first selected generation showed resistance equal to that of bees that had undergone natural selection from tracheal mite infestations for 3 yr in New York. Additionally, the high mite-resistant lines of the second selected generation and Buckfast bees had significantly lower mite abundances and prevalences than honey bees from control colonies which had never been exposed to tracheal mite infestation in Ontario. These results corroborate studies that have shown that honey bees possess genetic components for tracheal mite resistance that can be readily enhanced in a breeding program. The two methods used for evaluating relative resistance of honey bees to tracheal mites, a short-term bioassay and evaluation in field colonies, were positively correlated (rs = 0.64, P < 0.001).  相似文献   

15.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

16.
In order to decrease the variability of formic acid treatments against the honey bee parasite the varroa mite, Varroa destructor, it is necessary to determine the dose-time combination that best controls mites without harming bees. The concentration × time (CT) product is a valuable tool for studying fumigants and how they might perform under various environmental conditions. This laboratory study is an assessment of the efficacy of formic acid against the varroa mite under a range of formic acid concentrations and temperatures. The objectives are 1) to determine the effect of temperature and dose of formic acid on worker honey bee and varroa mite survival, 2) to determine the CT50 products for both honey bees and varroa mites and 3) to determine the best temperature and dose to optimize selectivity of formic acid treatment for control of varroa mites. Worker honey bees and varroa mites were fumigated at 0, 0.01, 0.02, 0.04, 0.08, and 0.16 mg/L at 5, 15, 25, and 35 °C for 12 d. Mite and bee mortality were assessed at regular intervals. Both mite and bee survival were affected by formic acid dose. Doses of 0.08 and 0.16 mg/L were effective at killing mites at all temperatures tested above 5 °C. There was a significant interaction between temperature, dose, and species for the CT50 product. The difference between the CT50 product of bees and mites was significant at only a few temperature-dose combinations. CT product values showed that at most temperatures the greatest fumigation efficiency occurred at lower doses of formic acid. However, the best fumigation efficiency and selectivity combination for treatments occurred at a dose of 0.16 mg/L when the temperature was 35 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5-10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.  相似文献   

18.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   

19.
The behaviour of the endoparasitic tracheal mite, Acarapis woodi (Rennie) on honey bees (Apis mellifera L.) is a challenge to observe because of its small size. Through a microscope, we videotaped this mite's movement on young bees, dead bees and bees exposed to vegetable oil. Previous studies have shown that solid vegetable oil decreases mite infestations in a bee colony. We hypothesized that the oil alters mite behaviour to the detriment of the parasite, thus helping to safeguard the host. Habitat-seeking behaviour, identified as necessary for mites to locate a new host environment, was disrupted on both dead and oil-treated bees. Questing behaviour, which is associated with transfer between hosts, increased significantly on the dead and oily bees. The behaviours of mites were significantly different between all three treatments (x 2=494.96, p<0.001 on dead bees and x 2=851.11, p<0.001 on oily bees). Both questing and seeking behaviours were significantly different on each of the thoracic treatments (F 2,66=7.88, p<0.001 and F 2,66=21.28, p<0.001) and mite questing behaviour was not altered between males and females on live or oily bees (F 1,22=0.25, p<0.62), but habitat seeking was (F 1,22=7.42, p<0.012). The male questing and habitat-seeking behaviours were observed. We conclude that oil-treated bees gained protection from habitat-seeking mites because the normal behaviour of the mites seeking an oviposition site is interrupted.  相似文献   

20.
Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X 2 = 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X 2 = 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X 2 = 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号