首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article we review the various amino acids present in vertebrate nonmuscle and smooth muscle myosin that can undergo phosphorylation. The sites for phosphorylation in the 20 kD myosin light chain include serine-19 and threonine-18 which are substrates for myosin light chain kinase and serine-1 and/or-2 and threonine-9 which are substrates for protein kinase C. The sites in vertebrate smooth muscle and nonmuscle myosin heavy chains that can be phosphorylated by protein kinase C and casein kinase II are also summarized.Original data indicating that treatment of human T-lymphocytes (Jurkat cell line) with phorbol 12-myristate 13-acetate results in phosphorylation of both the 20 kD myosin light chain as well as the 200 kD myosin heavy chain is presented. We identified the amino acids phosphorylated in the human T-lymphocytes myosin light chains as serine-1 or serine-2 and in the myosin heavy chains as serine-1917 by 1-dimensional isoelectric focusing of tryptic phosphopeptides. Untreated T-lymphocytes contain phosphate in the serine-19 residue of teh myosin light chain and in a residue tentatively identified as serine-1944 in the myosin heavy chain.Abbreviations MLC myosin light chain - MHC myosin heavy chain - Tris tris(hydroxymethyl)aminomethane - EGTA [ethylenebis(oxyethylenenitrilo)]tetraacetic acid - EDTA ethylenediaminetetraacetate - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - PMA phorbol 12-myristate 13-acetate  相似文献   

2.
IgE-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells results in the secretion of histamine. Myosin immunoprecipitated from these cells shows an increase in the amount of radioactive phosphate incorporated into its heavy (200 kDa) and light (20 kDa) chains. In unstimulated cells two-dimensional mapping of tryptic peptides of the myosin light chain reveals one phosphopeptide containing the serine residue phosphorylated by myosin light chain kinase. Following stimulation a second phosphopeptide appears containing a serine residue phosphorylated by protein kinase C. Tryptic phosphopeptide maps derived from myosin heavy chains show that unstimulated cells contain three major phosphopeptides. Following stimulation a new tryptic phosphopeptide appears containing a serine site phosphorylated by protein kinase C. The stoichiometry of phosphorylation of the myosin light and heavy chains was determined before and after antigenic stimulation. Before stimulation, myosin light chains contained 0.4 mol of phosphate/mol of light chain all confined to a serine not phosphorylated by protein kinase C. Cells that secreted 44% of their total histamine in 10 min exhibited an increase in phosphate content at sites phosphorylated by protein kinase C from 0 mol of phosphate/mol of myosin subunit to 0.7 mol of phosphate/mol of light chain and to 1 mol of phosphate/mol of heavy chain. When RBL-2H3 cells were made permeable with streptolysin O they still showed a qualitatively similar pattern of secretion and phosphorylation. Our results show that the time course of histamine secretion from stimulated RBL-2H3 cells parallels that of myosin heavy and light chain phosphorylation by protein kinase C.  相似文献   

3.
The heavy chain of smooth muscle myosin was found to be phosphorylated following immunoprecipitation from cultured bovine aortic smooth muscle cells. Of a variety of serine/threonine kinases assayed, only casein kinase II and calcium/calmodulin-dependent protein kinase II phosphorylated the smooth muscle myosin heavy chain to a significant extent in vitro. Two-dimensional maps of tryptic peptides derived from heavy chains phosphorylated in cultured cells revealed one major and one minor phosphopeptide. Identical tryptic peptide maps were obtained from heavy chains phosphorylated in vitro with casein kinase II but not with calcium/calmodulin-dependent protein kinase II. Of note, the 204-kDa smooth muscle myosin heavy chain but not the 200-kDa heavy chain isoform was phosphorylated by casein kinase II. Partial sequence of the tryptic phosphopeptides generated following phosphorylation by casein kinase II yielded Val-Ile-Glu-Asn-Ala-Asp-Gly-Ser*-Glu-Glu-Glu-Val. The Ser* represents the Ser(PO4) which is in an acidic environment, as is typical for casein kinase II phosphorylation sites. By comparison with the deduced amino acid sequence for rabbit uterine smooth muscle myosin (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737), we have localized the phosphorylated serine residue to the non-helical tail of the 204-kDa isoform of the smooth muscle myosin heavy chain. The ability of the 204-kDa isoform, but not the 200-kDa isoform, to serve as a substrate for casein kinase II suggests that these two isoforms can be regulated differentially.  相似文献   

4.
Treatment of human platelets with 162 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in phosphorylation of a number of peptides, including myosin heavy chain and the 20-kDa myosin light chain. The site phosphorylated on the myosin heavy chain was localized by two-dimensional peptide mapping to a serine residue(s) in a single major tryptic phosphopeptide. This phosphopeptide co-migrated with a tryptic peptide that was produced following in vitro phosphorylation of platelet myosin heavy chain using protein kinase C. The sites phosphorylated in the 20-kDa myosin light chain in intact cells were analyzed by two-dimensional mapping of tryptic peptides and found to correspond to Ser1 and Ser2 in the turkey gizzard myosin light chain. In vitro phosphorylation of purified human platelet myosin by protein kinase C showed that in addition to Ser1 and Ser2, a third site corresponding to Thr9 in turkey gizzard myosin light chain is also phosphorylated. The phosphorylatable myosin light chains from human platelets were found to consist of two major isoforms present in approximately equal amounts, but differing in their molecular weights and isoelectric points. A third, minor isoform was also visualized by two-dimensional gel electrophoresis. Following treatment with TPA, both the mono- and diphosphorylated forms of each isoform could be visualized, and the sites of phosphorylation were identified. The phosphate content rose from negligible amounts found prior to treatment with TPA to 1.2 mol of phosphate/mol of myosin light chain and 0.7 mol of phosphate/mol of myosin heavy chain following treatment. These results suggest that TPA mediates phosphorylation of both myosin light and heavy chains in intact platelets by activation of protein kinase C.  相似文献   

5.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

6.
Amino acid sequence of the active site of Acanthamoeba myosin II   总被引:3,自引:0,他引:3  
We have used the substrate [5,6-3H]UTP for direct photoaffinity labeling of the active site of the heavy chain of myosin II from Acanthamoeba castellanii. The only labeled peptide in a total tryptic digest had the sequence of Thr-Glu-Asn-Thr-Me2Lys-Lys (where Me2Lys represents dimethyllysine) with the substrate covalently bound to the Glu residue. This sequence differs at only one position from the sequence of residues 184-189 of nematode myosin heavy chain (Me2Lys----Lys), a post-translational modification, and at two additional positions from residues 185-190 of rabbit skeletal muscle myosin (Glu----Val and Lys----Arg). The partial sequence of a larger labeled peptide derived from total chymotryptic digestion was compatible with and extended this sequence. A 20-residue sequence that contains the active site, tryptic hexapeptide is otherwise identical in Acanthamoeba and rabbit skeletal muscle myosins and has only one more difference in nematode myosin. Because UTP is a substrate for myosin II and a "zero-length" probe, we believe that it identifies amino acid residues that are very close to the substrate during the catalytic cycle.  相似文献   

7.
The catalytic domain of myosin light chain kinase (MLCK) not only exerts kinase activity to phosphorylate the 20 kDa light chain but also inhibits the actin-myosin interaction. The site of action of this novel role of the domain has been suggested to be myosin [Okagaki et al. (1999) J. Biochem. 125, 619-626]. In this study, we have analyzed the amino acid sequences of MLCK and myosin that are involved in the inhibition. The ATP-binding peptide of Gly526-Lys548 of chicken gizzard MLCK exerted the inhibitory effect on the movement of actin filaments on a myosin-coated glass surface. However, the peptide that neighbors the sequence failed to inhibit the movement. The inhibition of the ATP-binding peptide was confirmed by measuring ATPase activities of the myosin. The inhibition by parent MLCK of the movement was relieved by the 20 kDa light chain, but not by the 17 kDa myosin light chain. The peptide of the 20 kDa light chain sequence of Ser1-Glu29 also relieved the inhibition. Thus, the interaction of the ATP-binding sequence with the 20 kDa light chain sequence should cause the inhibition of the actin-myosin interaction. Concerning the regulation of the inhibition, calmodulin relieved the inhibitory effect of MLCK on the movement of actin filaments. The calmodulin-binding peptide (Ala796 Ser815) prevented the relief, suggesting the involvement of this sequence. Thus, the mode of regulation by Ca2+ and calmodulin of the novel role of the catalytic domain is similar, but not identical, to the mode of regulation of the kinase activity of the domain.  相似文献   

8.
Two proteins with myosin light chain kinase activity and electrophoretic molecular weights of 155,000 and 130,000 were each isolated from bovine stomach smooth muscle [Kuwayama, H., Suzuki, M., Koga, R., & Ebashi, S. (1988) J. Biochem. 104, 862-866]. The 155 kDa component showed a much higher superprecipitation-inducing activity than the 130 kDa component, when compared on the basis of equivalent myosin light chain kinase activity. In this study, we isolated a cDNA for the entire coding region of the 155 kDa protein. The deduced amino acid sequence revealed a high degree of similarity to those of chicken and rabbit smooth muscle myosin light chain kinases. Multiple motifs, such as three repeats of an immunoglobulin C2-like domain, a fibronectin type III domain, and unusual 20 repeats of 12 amino acids were detected in the sequence. Part of the amino-terminal sequence was similar to that of the actin- and calmodulin-binding domain of smooth muscle caldesmon. These observations suggest that the 155 kDa protein has additional functions other than its enzymatic activity. Two mRNAs of 6.0 and 2.6 kb in length in the bovine stomach smooth muscle RNAs were hybridized with cDNA probes. The 2.6-kb RNA probably encodes telokin, which is the carboxyl terminus of smooth muscle myosin light chain kinase. mRNAs with identical lengths were also detected in bovine aorta.  相似文献   

9.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

10.
Subfragment-1 was prepared from adult chicken pectoralis myosin by limited digestion with alpha-chymotrypsin, and an amino-terminal 23 kDa fragment of the heavy chain was obtained by digesting the subfragment-1 with trypsin. The 205-residue sequence of the fragment was determined by sequencing its cyanogen bromide, tryptic, and chymotryptic peptides. The amino-terminal alpha-amino group of the fragment was acetylated, and two methylated lysines; epsilon-N-monomethyllysine and epsilon-N-trimethyllysine were recognized at the 35th and 130th positions, respectively, as in rabbit skeletal myosin. Comparing the 205-residue sequence of the skeletal myosin with those of cardiac, and gizzard myosins from chicken, considerable differences are recognized, especially in the amino-terminal region, but strong homologies are observed around the reactive lysine residue, around the epsilon-N-trimethyllysine residue, and around the consensus sequence of GXXGXGKT for nucleotide-binding proteins. On the other hand, only 12 amino acid substitutions are recognized between adult and embryonic skeletal myosins, allowing for the post-translational methylation.  相似文献   

11.
We have isolated and sequenced the gene and the cDNA coding for the human cardiac beta-myosin heavy chain (designated MYH7). The gene is 22,883 bp long. The 1935 amino acids of this protein (Mr223,111) are encoded by 38 exons. The 5' untranslated region (86 bp) is split by two introns. The 3' untranslated region is 114 bp long. Three Alu repeats were identified within the gene and a fourth one in the 3' flanking intergenic region. The molecular organization of this gene reflects the conservative pattern with respect to size, coding ratio, and number or position of introns characteristic of vertebrate sarcomeric myosin heavy chain genes. The protein sequence of the human beta-heavy chain was compared with corresponding (homologous) sequences of rabbit, rat, and hamster as well as with the (heterologous) embryonic heavy chain sequences of rat, chicken, and man. The results show that protein subregions responsible for basic functions of myosin heavy chains (nucleotide binding and actin binding) are very similar in homologous and heterologous heavy chains. Regions that differ in their primary sequences in heterologous heavy chains appear to be highly conserved within mammalian beta-myosin heavy chains. Constant and variable subregions of heavy chains are discussed in terms of functional significance and evolutionary relatedness.  相似文献   

12.
Vipera lebetina venom contains specific coagulant Factor X activator (VLFXA) that cleaves the Arg52-Ile53 bond in the heavy chain of human factor X. VLFXA is a glycoprotein that is composed of a heavy chain (HC) and two light chains (LC) linked by disulfide bonds. The complete amino acid sequences of the three chains of the factor X activator from V. lebetina snake venom are deduced from the nucleotide sequences of cDNAs encoding these chains. The full-length cDNA (2347 bp) sequence of the HC encodes an open reading frame (ORF) of 612 amino acids that includes signal peptide, propeptide and mature metalloproteinase with disintegrin-like and cysteine-rich domains. The light chain LC1 contains 123 and LC2 135 amino acid residues. Both light chains belong to the class of C-type lectin-like proteins. The N-termini of VLFXA chains and inner sequences of peptide fragments detected by liquid chromatography-electrospray ionization tandem mass spectrometry (LC MS/MS) from protein sequence are 100% identical to the sequences deduced from the cDNA. The molecular masses of tryptic fragments of VLFXA chains analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) also confirm the protein sequences deduced from the cDNAs. These are the first cloned factor X activator heavy and light chains. We demonstrate that the heavy and light chains are synthesized from different genes.  相似文献   

13.
1. The myosin molecule from Ehrlich ascites tumour cells consists of heavy chains of about 200 kDa and three species of light chains of 20, 19 and 15 kDa. 2. The heavy chain can be phosphorylated in vitro either by endogenous Ca2+-independent kinase or by casein kinase II. 3. The 20 and 19 kDa light chains can be phosphorylated either by an endogenous kinase or by myosin light chain kinase from chicken gizzard. 4. The Ca2+-ATPase activity of the purified myosin was 0.3 mumol/min mg protein. The Mg2+-ATPase activity was activated 14-fold by actin upon the light chain phosphorylation.  相似文献   

14.
We have determined the sequence of the sites phosphorylated by protein kinase C in the turkey gizzard smooth muscle myosin light chain. In contrast to previous work (Nishikawa, M., Hidaka, H., and Adelstein, R. S. (1983) J. Biol. Chem. 258, 14069-14072), two-dimensional tryptic peptide maps of both heavy meromyosin and the isolated myosin light chain showed two major phosphopeptides, one containing phosphoserine and the other phosphothreonine. We have purified the succinylated tryptic phosphopeptides using reverse phase and DEAE high pressure liquid chromatography. The serine-containing peptide, residues 1-4 (Ac-SSKR), is the NH2-terminal peptide. The phosphorylated serine residue may be either serine 1 or serine 2. The threonine-containing peptide, residues 5-16, yielded the sequence AKAKTTKKRPQR. Analysis of the yields and radioactivity of the products from automated Edman degradation showed that threonine 9 is the phosphorylation site.  相似文献   

15.
It has been demonstrated previously that lymphocytes of donor CF (HLA-A29,w33; B7,14) are not recognized by the HLA-B7-specific CTL clone HG-31. This report presents a structural comparison of the HLA-B7 antigen of donor CF with a "normal" HLA-B7 antigen, derived from the cell line JY. Isoelectric focusing showed that CF HLA-B7 heavy chains were more acidic than JY HLA-B7 heavy chains by the equivalent of a single charge. High pressure liquid chromatography and ion exchange chromatography comparisons of double-labeled tryptic peptides revealed a single detectable difference, which corresponded to the tryptic peptide spanning residues 112 to 121 on the HLA-B7 heavy chain. Although the complete amino acid sequence of this peptide was not obtained, the partial sequence indicates a substitution of an unidentified amino acid for tyrosine at position 116 of the heavy chain. This residue is found to vary among HLA specificities and to be altered in many H-2Kb mutants.  相似文献   

16.
The actin-activated Mg2+-ATPase activities of Acanthamoeba myosins IA, IB, and IC are expressed only when a single site in their heavy chains is phosphorylated by a myosin I heavy chain-specific kinase. We show that phosphorylation occurs at Ser-315 in the myosin IB heavy chain, Ser-311 in myosin IC, and a threonine residue at a corresponding position in myosin IA whose amino acid sequence is as yet unknown. The most obvious feature common to the three substrates is a basic amino acid(s) 2 or 3 residues before the site of phosphorylation. The phosphorylation site is located between the ATP- and actin-binding sites, which corresponds to the middle of the 50-kDa domain of skeletal muscle myosin subfragment 1. The sequence similarity between the region surrounding the phosphorylation site of myosin I and subfragment 1 is much lower than the average sequence similarity between myosin I and subfragment 1. This is consistent with the hypothesis that the conformation of this region of myosin I differs from that of the corresponding region in skeletal muscle myosin and that phosphorylation converts the conformation of the actomyosin I complex into a conformation comparable to that present in actosubfragment 1 without phosphorylation. The protein sequences obtained in the course of this work led to the conclusion that the myosin I genes previously identified as myosin IB and IL (myosin-like) heavy chains actually are the myosin IC and IB heavy chains, respectively. Finally, we report a modification of the method for monitoring the appearance of 32Pi during sequencing of 32P-labeled peptides that results in almost complete recovery of the radioactivity, thus allowing unequivocal assignment of the position of the phosphorylated residue.  相似文献   

17.
The amino acid sequence of the 20-kDa regulatory light chain (LC20) of myosin from porcine aorta media smooth muscle was determined. The LC20 consisted of 171 amino acid residues and its N-terminal Ser residue was blocked by an acetyl group. The amino acid sequence was identical with that of chicken gizzard myosin LC20 except that the 60th residue, Met in chicken gizzard LC20, was substituted for Leu in porcine aorta LC20.  相似文献   

18.
Comparisons between chicken low molecular weight immunoglobulin (LMW Ig) and human heavy chains as to molecular weights, amino acid compositions, tryptic peptide maps, and CHO-peptide sequences revealed significant differences. The molecular weight of the chicken heavy chain, 60,000, is approximately 10,000 more than that for human , indicating up to 100 more amino acids, including three more cysteine residues. Tryptic peptide map comparisons revealed no common peptides as to mobilities and amino acid compositions. The sequence of the chicken heavy chain CHO-peptide, Gly-Trp-Val-Ser-Asx-Thr-Cys, exhibits little homology with the CHO-peptides or cysteine peptides of human or heavy chains. The implications of these structural differences between chicken and human heavy chains with regard to evolutionary relatedness and secondary biological functions are discussed.  相似文献   

19.
Amino acid sequences of peptides containing the phosphorylation site of bovine cardiac myosin light chain (L2) were determined. The site was localized to a serine residue in the tentative amino terminus of the light chain and is homologous to phosphorylation sites in other myosin light chains. Phosphorylation of bovine cardiac light chain by chicken gizzard myosin light chain kinase was Ca2+-calmodulin dependent. Kinetic data gave a Km of 107; microM and a Vmax of 23.6 mumol min-1 mg-1. In contrast to what has been observed with smooth muscle light chains, neither the phosphorylation site fragment of the cardiac light chain nor a synthetic tetradecapeptide containing the phosphorylation site were effectively phosphorylated by the chicken gizzard kinase. Phosphorylation of cardiac myosin light chains by chicken gizzard myosin light chain kinase, therefore, requires other regions of the light chain in addition to a phosphate acceptor site.  相似文献   

20.
Phylogenetic studies of cardiac myosins from amphibia to mammals   总被引:1,自引:0,他引:1  
Comparison between pig atrial and ventricular myosins was performed on the light chains (using SDS-PAGE) and on the heavy chains (using Ca2+-ATPase measurements and NTCBA peptide mapping). Light chain composition of pig cardiac myosins was compared to three other species ones (frog, chicken and human). Up to birds, atrial and ventricular myosin light chain composition was identical whereas in mammals atrial and ventricular myosin light chain composition was different; likewise the heavy chains. Six cardiac myosin isoenzymes have been thus characterized. No correlation can be established between cardiac myosin light chain pattern and species evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号