首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The retinofugal projections in the eel were studied by use of the cobalt-filling technique. The optic tract projects contralaterally to the hypothalamic optic nucleus, the anterior periventricular nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, four pretectal recipient areas, the optic tectum, and the tegmentum. Small ipsilateral projections were demonstrated in the hypothalamic optic nucleus, the dorsomedial optic nucleus, and the optic tectum.  相似文献   

2.
The retinofugal projections of the snake Thamnophis sirtalis were studied by the method of experimentally induced Wallerian degeneration stained by the Fink-Heimer method. The retinal ganglion cells project to all parts of the contralateral lateral geniculate complex, nucleus lentiformis mesencephali, nucleus geniculatus pretectalis, nucleus posterodorsalis, basal optic nucleus and superficial layers of the optic tectum. In addition, the retinofugal projections were observed terminating in portions of the ipsilateral lateral geniculate complex and nucleus posterodorsalis. Examination of the morphology of the retinal terminal areas stained for Nissl substance with cresyl violet led to the conclusion that these regions are well differentiated and should not be considered poorly developed when compared with other reptilian forms such as turtles.  相似文献   

3.
Summary The retinal projections were studied in the black piranah (Serrasalmus niger) with degeneration and autoradiographic methods. The projections are bilateral to the hypothalamic optic nucleus, the dorsomedial optic nucleus, corpus geniculatum ipsum of Meader (1934) and the optic tectum. Unilateral, crossed projections were traced to the pretectal nucleus and the cortical nucleus. The visual system of the black piranah is exceptionally well developed but has retained many primitive features including the extensive bilateral projections.  相似文献   

4.
Summary The projections of horseradish peroxidase-filled axons from each quadrant of the retina were studied to determine whether retinal projections of goldfish are topographically organized in diencephalic target nuclei. A distinct topography of the dorsal, nasal, ventral and temporal retina exists in the lateral geniculate nucleus and in the dorsolateral optic nucleus of the thalamus. The projections of retinal quadrants show minimal spatial overlap in each of these nuclei. The suprachiasmatic nucleus of the hypothalamus is extensively innervated by ventral retinal fibers, whereas the nucleus is sparsely innervated by fibers from the other three retinal quadrants. A rudimentary topography also exists in the pretectum where the dorsal pretectal area receives projections primarily from the ventral retina and the ventral pretectal area receives projections mostly from the dorsal retina. These data show that retinal projections to some diencephalic nuclei are topographically organized.This work was supported by Research Grant EY-01426 to S.C.S.  相似文献   

5.
This study investigated the retinal projections of the adult Formosan rock monkey by monocular injection of radioactive proline and fucose. We found that the retinofugal fibers terminated bilaterally in the suprachiasmatic, pregeniculate, lateral geniculate, pretectal complex, pulvinar nucleus, superior colliculus, dorsal and lateral terminal nuclei of the accessory optic system. More crossed retinal terminations were observed, with the exception that the suprachiasmatic nucleus received almost equally of both retinal projections. The existence of the retinal projection to the medial terminal nucleus of the accessory nucleus was in doubt. In the geniculate nucleus, the retinal fibers terminated contralaterally in layers 1, 4 and 6; and ipsilaterally in 2, 3 and 5. In the superior colliculus, most retinal fibers were aggregated superficially in a band located in the contralateral striatum griseum superficialis of the superior colliculus, and had few gaps on the ipsilateral one. The present investigation shows that the Formosan rock monkey has a similar pattern of optic fiber distribution to that of other macaques.  相似文献   

6.
Summary The poorly developed visual system of the electric catfish was studied with silver-degeneration methods. Retinal projections were entirely contralateral to the hypothalamic optic nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, the pretectal nuclei including the cortical nucleus, and the optic tectum. The small size and lack of differentiation of the visual system in the electric catfish suggest a relatively small role for this sensory system in this species.  相似文献   

7.
The retinogeniculate pathways of normal and albino ferrets have been studied with horseradish peroxidase and tritiated proline used as axonal markers. The uncrossed retinogeniculate projection of adult albino ferrets is abnormally small and occupies only a fraction of the geniculate area normally occupied by uncrossed afferents. The crossed pathway is correspondingly expanded, occupying almost the entire nucleus. The geniculate laminae in the albino ferret are abnormal, showing abnormal fusions between layers receiving crossed input and abnormal discontinuities next to the small cell islands receiving uncrossed afferents. In early development, retinofugal fibres can be labelled within the optic tracts on the 28th intrauterine day and a few crossed fibres can be traced into the lateral geniculate nucleus. At this stage, the uncrossed component is extremely small in normal and albino animals and cannot be traced beyond the tract. By day 32 retinal fibres are invading the lateral geniculate nucleus bilaterally, the invasion by the crossed component being significantly more advanced than that by the uncrossed component. The uncrossed pathway of the albinos is already abnormal in terms of its size, in terms of the position it occupies in the optic tract, and in terms of its limited invasion of the lateral geniculate nucleus. The abnormally reduced size of the uncrossed component appears earlier than the abnormal segregation of the retinogeniculate terminals, suggesting that the primary action of the albino gene upon central visual pathways is prechiasmatic. At postnatal stages (41 days after conception and older) the normal, gradual withdrawal of the uncrossed fibres from the monocular segment, and the separation of crossed from uncrossed retinogeniculate terminal arbors is significantly delayed in the albinos. The uncrossed retinogeniculate terminals are abnormally sparse initially and become distributed in an abnormal, interrupted pattern as development proceeds. The abnormal pattern of geniculate lamination appears to be secondary to the abnormal distribution of retinogeniculate afferents.  相似文献   

8.
A method is described for studying the morphological features of extensive axonal projections within the central nervous system of the gerbil, Meriones anguiculatus. Potentially long descending axonal projections between the auditory thalamus and lower brainstem were used as a model. The inferior colliculus (IC) in the tectum was injected in vivo with a fluorescent retrograde tracer, Fluoro-Gold, to label cells in the medial geniculate body (MGB) that had descending projections to the IC, and cells in the superior olivary complex (SOC) that had ascending projections to the IC. Another fluorescent retrograde tracer, fast blue, was injected into the cochlea to label olivocochlear (OC) cells in the SOC. Inferomedially curved parasagittal slices containing ipsilateral auditory cell groups from the thalamus to the brainstem were cut and descending axons of the pre-labeled MGB cells were traced anterogradely with Biocytin. After visualizing histologically the injected Biocytin, discretely labeled IC-projecting axons of the MGB cells were traced including their collaterals that extended further into the SOC. In the SOC, these axons terminated on pre-labeled cells including OC cells. The combination of anterograde and retrograde tracing in the slice preparations described here demonstrated extensive descending axonal projections from the thalamus to their targets in the lower brainstem that had known ascending/descending projections within the auditory system.  相似文献   

9.
Injection of horseradish peroxidase into the basal macrocellular and lateral nuclei of the amygdaloid complex (BLAC) in the cat brain has revealed their rich thalamic afferentation. On the BLAC there are massive projections of: a) nuclei of the middle line of the precommissural pole of the dorsal thalamus (anterior parts of the paratenial, interanteromedial and reunial nuclei), as well as the whole anterior paraventricular nucleus, medial part of the ventral posteromedial nucleus; b) postcommissural nuclei of the dorsal thalamus; some "nonacustical" nuclei of the internal geniculate body (ventrolateral nucleus, medial and macrocellular parts and the most caudal end of the internal geniculate body). Rather essential are projections of the "posterior group nuclei", those of the suprageniculate nucleus, of some parts of the ventral thalamus (subparafascicular nucleus, marginal and peripeduncular nuclei) and parabrachial nucleus. Scattered single projections are obtained from all hypothalamic parts (most of all the ventromedial nucleus), reticular nuclei of the septum, substantia innominata, substantia nigra, truncal nuclei of the raphe. Variety of the dorsal thalamic nuclei, sending their fibers to the BLAC reflects variety of sensory information, that gets here, according to its modality, degree of its differentiation and integrity. A number of the dorsal thalamus nuclei, owing to abundance of labelled neurons, can be considered as special relay thalamic nuclei for the BLAC resembling corresponding relay nuclei for the new cortex.  相似文献   

10.
The beta sector of the rabbit's dorsal lateral geniculate nucleus is a small region of nerve cells scattered among the fibres of the geniculocortical pathway. In its topographical relations it resembles the perigeniculate nucleus of carnivores, which contains neurons driven by geniculate and visual cortical neurons and which sends inhibitory fibres back into the geniculate relay. We have traced retinogeniculate, geniculocortical and corticogeniculate pathways in rabbits by using horseradish peroxidase or radioactively labelled proline and have found that the beta sector resembles the perigeniculate nucleus in receiving no direct retinal afferents, sending no efferents to the visual cortex (V-I), and receiving afferents from the visual cortex. The corticogeniculate afferents are organized so that the visual field map in the beta sector and the main part of the lateral geniculate relays are aligned, as are the maps in the cat's perigeniculate nucleus and the main part of the geniculate relay of carnivores. Electron microscopical studies show similar types of axon terminals in the rabbit and the cat for the main part of the geniculate relay on the one hand and for the beta sector and the perigeniculate nucleus on the other. Earlier observations that the proportion of putative inhibitory terminals (F-type terminals) is lower in the rabbit's than the cat's geniculate region are confirmed. A major difference between the beta sector and the perigeniculate nucleus has been revealed by immunohistochemical staining for GABA. Whereas almost all of the cat's perigeniculate cells appear to be GABAergic, the proportion in the beta sector is much lower, and not significantly different from that found in the main part of the rabbit's geniculate relay. It is concluded that the beta sector shares many of the organizational features of the perigeniculate nucleus. A common developmental origin seems probable, but the functional differences remain to be explored.  相似文献   

11.
Microiontophoretic local injection of horseradish peroxidase (HP) have been performed into the median center (MC). Many thalamic nuclei are sources of projections into MC, though the role of each nucleus is not equivalent. MC is predominantly connected with nonspecific formations (reticular, parafascicular, central-lateral, paracentral, ventromedial, paraventricular). Among them the reticular nucleus is distinguished, it sends its efferent fibers from the ventral, ventrolateral and lateral areas. In the anterior part of the reticular nucleus there are no HP-labelled cells. In MC little projections from specific nuclei (ventrobasal complex, ventrolateral nucleus, geniculate body) are presented, as well as simple projections from the associative nuclei. The data obtained are in keeping with electron physiological investigations.  相似文献   

12.
Summary Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord.The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract.Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.  相似文献   

13.
Cortical projections from the visual region and adjacent polysensory region of the superior temporal sulcus (STs) to the lateral geniculate body (LGb) were investigated in the macaque monkey using an autoradiographic tracing method. Solutions of tritiated aminoacids were injected into different parts of the caudal half of the STs of five animals. A survival time of 7 days was allowed. Labels were found in both subdivisions of the LGb: the dorsal lateral geniculate nucleus (DLGn) and the pregeniculate nucleus (PGn). In particular, part of the visual cortical region adjacent to the middle temporal area (MT) projects into the DLGn as well as the PGn, whereas the MT itself and the superior temporal polysensory region project into the PGn only. Afferents to the DLGn terminate in the magnocellular layers and in their adjoining interlaminar zones, completely sparing the parvocellular layers. Afferents to the PGn terminate in separate regions of this nucleus; the MT and adjacent visual cortices project into the internal layer of the PGn, whereas the polysensosy region of the STs projects into the external retinorecipient layer of the PGn. Possible functional implications of these projections are discussed.  相似文献   

14.
Lagged cells     
Saul AB 《Neuro-Signals》2008,16(2-3):209-225
The timing of the retinal input to the lateral geniculate nucleus is highly modified in lagged cells. Evidence is reviewed for how the responses of these cells are generated, how their structure and function differs from their nonlagged neighbors, and what their projections to cortex might do.  相似文献   

15.
By means of the anterograde axoplasmic transport technique for a mixture of labelled aminoacids (3H-leucine and 3H-proline), ascending and descending systems of the reticular formation fibers in the cat mesencephalon have been studied. Projections from the mesencephalon reticular formation (MRF) ascend to the subthalamus, lateral, dorsal and periventricular hypothalamus, to the periventricular nuclei of the midline and to the intralaminar nuclei of the thalamus. The descending pathways project to the grey substance surrounding the aqueduct of cerebrum, locus coeruleus, parabrachial region and reticular formation of the pons and medulla oblongata. The projections to the reticular nucleus of the thalamus, ventral nucleus of the external geniculate body and superior colliculi arise from the dorsal half of the MRF, and projections to the striatum, lateral reticular nucleus of the medulla oblongata--from its ventral half. Most of the structures are reciprocally connected with the MRF.  相似文献   

16.
Retrograde and transganglionic transport of horseradish peroxidase (HRP) was used to investigate the neurons innervating the upper and the lower lips and their central projections in the rat. Both the upper and the lower lips were observed to be innervated by a very large number of trigeminal sensory neurons, with their cell bodies located in the maxillary and the mandibular parts of the trigeminal ganglion, respectively. The central projections of neurons innervating the upper lip formed a long continuous column starting rostrally at midlevels of the trigeminal main sensory nucleus (5P) and extending caudally through the CI dorsal horn, with occasional fibers reaching the C3 segment. The heaviest projections appeared in the middle portions of 5P and nucleus interpolaris (51), as well as in the rostral part of nucleus caudalis (5C). A small but consistent projection to the solitary tract nucleus, originating from cells in the inferior vagal ganglion, was observed in the upper-lip experiments. The central projections from neurons innervating the lower lip also appeared as a long column located dorsally or dorsomedially to the projections from the upper lip. The most prominent projections from the lower lip were located in the caudal part of 5P, the middle part of 5I, and the caudal two-thirds of 5C. Sparse projections could be traced as far caudally as C4. At 5C and cervical levels, some labeling appeared contralaterally in the same location as on the ipsilateral side.  相似文献   

17.
In order to understand better the organisation of the ventral lateral geniculate nucleus of the ventral thalamus, this paper has examined the patterns of connections that this nucleus has with various nuclei of the dorsal thalamus in rats. Injections of biotinylated dextran or cholera toxin subunit B were made into the parafascicular, central lateral, posterior thalamic, medial dorsal, lateral dorsal, lateral posterior, dorsal lateral geniculate, anterior, ventral lateral, ventrobasal and medial geniculate nuclei of Sprague-Dawley rats and their brains were processed using standard tracer detection methods. Three general patterns of ventral lateral geniculate connectivity were seen. First, the parafascicular, central lateral, medial dorsal, posterior thalamic and lateral dorsal nuclei had heavy connections with the parvocellular (internal) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown previously to receive heavy inputs from many functionally diverse brainstem nuclei. Second, the visually related dorsal lateral geniculate and lateral posterior nuclei had heavy connections with the magnocellular (external) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown by previous studies to receive heavy inputs from the visual cortex and the retina. Finally, the anterior, ventral lateral, ventrobasal and medial geniculate nuclei had very sparse, if any, connections with the ventral lateral geniculate nucleus. Overall, our results strengthen the notion that one can package the ventral lateral geniculate nucleus into distinct visual (magnocellular) and non-visual (parvocellular) components.  相似文献   

18.
During development of the mammalian eye, the first retinal ganglion cells (RGCs) that extend to the brain are located in the dorsocentral (DC) retina. These RGCs extend to either ipsilateral or contralateral targets, but the ipsilateral projections do not survive into postnatal periods. The function and means of disappearance of the transient ipsilateral projection are not known. We have followed the course of this transient early ipsilateral cohort of RGCs, paying attention to how far they extend, whether they enter targets and if so, which ones, and the time course of their disappearance. The DC ipsilateral RGC axons were traced using DiI labeling at E13.5 and E15.5 to compare the proportion of ipsi‐ versus contralateral projections during the first period of growth. In utero electroporation of E12.5 retina with GFP constructs was used to label axons that could be visualized at succeeding time points into postnatal ages. Our results show that the earliest ipsilateral axons grow along the cellular border of the brain, and are segregated from the laterally positioned contralateral axons from the same retinal origin. In agreement with previous reports, although many early RGCs extend ipsilaterally, after E16 their number rapidly declines. Nonetheless, some ipsilateral axons from the DC retina enter the superior colliculus and arborize minimally, but very few enter the dorsal lateral geniculate nucleus and those that do extend only short branches. While the mechanism of selective axonal disappearance remains elusive, these data give further insight into establishment of the visual pathways. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1385–1401, 2015  相似文献   

19.
Efferent connections of medial (nucleus cuneiformis) and lateral regions of the midbrain reticular formation (MRF) were investigated using an anterograde autoradiographic technique in cats. Efferent fibers from the MRF ascend to the globus pallidus, substantia innominata, hypothalamus, subthalamus, and nonspecific associative and relay nuclei of the thalamus. Descending pathways to the conclusion that the cuneiform nucleus is more of a nonspecific structure than an association auditory center. The lateral reticular region had numerous projections to the lateral geniculate body and, together with the parabigeminal nucleus, forms the midbrain visual complex.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 646–652, September–October, 1985.  相似文献   

20.
The retinohypothalamic tract (RHT) originates from a subset of retinal ganglion cells (RGCs). The cells of the RHT co-store the neurotransmitters PACAP and glutamate, which in a complex interplay mediate light information to the circadian clock located in the suprachiasmatic nuclei (SCN). These ganglion cells are intrinsically photosensitive probably due to expression of melanopsin, a putative photoreceptor involved in light entrainment. In the present study we examined PACAP-containing retinal projections to the brain using intravitreal injection of the anterograde tracer cholera toxin subunit B (ChB) and double immunostaining for PACAP and ChB. Our results show that the PACAP-containing nerve fibres not only constituted the major projections to the SCN and the intergeniculate leaflet of the thalamus but also had a large terminal field in the olivary pretectal nucleus. The contralateral projection dominated except for the SCN, which showed bilateral innervation. PACAP-containing retinal fibres were also found in the ventrolateral preoptic nucleus, the anterior and lateral hypothalamic area, the subparaventricular zone, the ventral part of the lateral geniculate nucleus and the nucleus of the optic tract. Retinal projections not previously described in the rat also contained PACAP. These new projections were found in the lateral posterior nucleus, the posterior limitans nucleus, the dorsal part of the anterior pretectal nucleus and the posterior and medial pretectal nuclei. Only a few PACAP-containing retinal fibres were found in the superior colliculus. Areas innervated by PACAP-immunoreactive fibres also expressed the PACAP-specific PAC1 receptor as shown by in situ hybridization histochemistry. The findings suggest that PACAP plays a role as neurotransmitter in non-imaging photoperception to target areas in the brain regulating circadian timing, masking, regulation of sleep-wake cycle and pupillary reflex.Abbreviations 3v Third ventricle - ac Anterior commissure - AD Anterodorsal thalamic nucleus - AH Anterior hypothalamic area - APTD Anterior pretectal nucleus, dorsal part - ChB Cholera toxin subunit B - CPu Caudate putamen - CPT Commissural pretectal nucleus - DGL Dorsal geniculate nucleus - IGL Intergeniculate leaflet - LH Lateral hypothalamic area - LP Lateral posterior thalamic nucleus - LS Lateral septum - MB Mammillary body - MPO Medial preoptic nucleus - MPT Medial pretectal nucleus - oc Optic chiasma - OPT Olivary pretectal nucleus - OT Nucleus of the optic tract - PACAP Pituitary adenylate cyclase-activating polypeptide - PAC1 PACAP receptor type 1 - PAG Periaqueductal gray - Pe Periventricular hypothalamic nucleus - PLi Posterior limitans thalamic nucleus - PPT Posterior pretectal nucleus - PVT Paraventricular thalamic nucleus - PVN Paraventricular hypothalamic nucleus - RGCs Retinal ganglion cells - RHT Retinohypothalamic tract - SCN Suprachiasmatic nucleus - SC Superior colliculus - SNR Substantia nigra, reticular part - SON Supraoptic nucleus - SPVZ Subparaventricular zone - VGL Ventral geniculate nucleus - VIP Vasoactive intestinal peptide - VPAC1 VIP/PACAP receptor type 1 - VPAC2 VIP/PACAP receptor type 2 - VLPO Ventrolateral preoptic nucleus - VTA Ventral tegmental areaThis study was supported by The Danish Biotechnology Center for Cellular Communication and The Danish Neuroscience Programme. J.H. is postdoc funded by the Danish Medical Research Council (Jr. No. 0001716)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号