首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Interspecific competition between phytophagous insects using the same host plant occurs frequently and can strongly affect population densities of competing species. Competition between gallmakers and stemborers could be especially intense because both types of herbivore are unable to avoid competition by relocation during their immature stages. For apical meristem gallmakers the main result of competition is likely to be the interruption of resources to the gall by the stemborers' devouring of stem contents. The proximate effect of such competition could be to reduce gall size, thereby increasing the number of chambers per gall unit volume, and reducing the size and potential reproductive output of the gallformer. In addition, smaller galls may be more susceptible to attack from size‐limited parasitoids, resulting in a second indirect effect of competition. Using a community of galling and stemboring insects on the saltmarsh shrub Iva frutescens L. (Asteraceae), we measured for indirect effects of competition. We examined the primary indirect effect of competition on gall midge crowding and the secondary effects on parasitism rates and parasitoid guild composition. Results indicated that galls co‐occurring with stemborers were smaller, crowding of gall inhabitants was 22% greater, and the composition of the parasitoid guild was altered relative to galls on unbored stems. The overall parasitism rate was not different between galls on bored vs. unbored stems. These results show that competition resulting from the presence of stemborers has the potential to affect the gall midge Asphondylia borrichiae Rossi & Strong (Diptera: Cecidomyiidae) and secondarily to affect its guild of hymenopteran parasitoids.  相似文献   

2.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

3.
Abstract.
  • 1 Rapid and substantial changes have occurred in the parasitoid and inquiline community associated with the agamic galls of Andricus quercuscalicis since it invaded Britain in the late 1950s. The number of parasitoid and inquiline species has risen from one to thirteen over a 15-year period. Although the number of species has been relatively consistent over the last 8 years, the species composition has changed considerably and in a highly characteristic way during this period.
  • 2 The parasitoid complex can be divided into two broadly distinct sets of parasitoid species; one set attacks only the gall former whereas the other set concentrates on the inquilines living in the wall of the gall.
  • 3 The most dramatic change, however, is in the abundance of inquilines which were reported to be virtually absent in earlier studies on this community in Britain. Over a period of only 5 years, between 1988 and 1993, inquiline attack rose from less than 0.01 to an average of 0.26 inquilines per gall. The intensity of inquiline attack is geographically heterogenous, with high inquiline numbers restricted to south-east England. Because of the relatively high specificity of the parasitoids, high inquiline abundance is positively correlated with parasitoid species richness in knopper galls.
  • 4 Parasitism rates, particularly on the gall former, were generally low (<10%). Over the last 5 years, however, seven parasitoid species have been consistently recorded and the mortality caused by these species has increased continuously. The species composition of the community associated with this alien gall wasp in Britain has quickly converged to the community known from its native range in continental Europe. Parasitoid species known to attack the galls of A.quercuscalisis on the continent have been recorded from it in Britain for the first time mainly in areas where inquilines have recently become abundant.
  • 5 Since rates of parasitism of the gall former are still low, parasitoids are unlikely to play a major role in the population dynamics of this invading gall wasp at present, but the rapidly increasing inquiline and parasitoid attack could be a source of increased mortality for native cynipid species which are the alternative hosts of those parasitoid species.
  相似文献   

4.
Plant galls are preyed upon by a diverse group of parasitoids and inquilines, which utilize the gall, often at the cost of the gall inducer. This community of insects has been poorly described for most cynipid-induced galls on oaks in North America, despite the diversity of these galls. This study describes the natural history of a common oak apple gall (Andricus quercuscalifornicus [Cynipidae]) and its parasitoid and inquiline community. We surveyed the abundance and phenology of members of the insect community emerging from 1234 oak apple galls collected in California’s Central Valley and found that composition of the insect community varied with galls of different size, phenology, and location. The gall maker, A. quercuscalifornicus, most often reached maturity in larger galls that developed later in the season. The parasitoid Torymus californicus [Torymidae] was associated with smaller galls, and galls that developed late in the summer. The most common parasitoid, Baryscapus gigas [Eulophidae], was more abundant in galls that developed late in the summer, though the percentage of galls attacked remained constant throughout the season. A lepidopteran inquiline of the gall (Cydia latiferreana [Tortricidae] and its hymenopteran parasitoid (Bassus nucicola [Braconidae]) were associated with galls that developed early in the summer. Parasitoids and inquilines, in general, had a longer emergence period and diapause within the gall than the gall-inducer. The association of different parasite species with galls of different size and phenology suggests that different parasite species utilize galls with slight differences in traits.  相似文献   

5.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

6.
Abstract.  1. This paper explores the potential effects of host-plant fragmentation on cork oak gall wasp populations (Cynipidae, Hymenoptera) and on their predators, lethal inquilines, and parasitoids. To address this objective, galls were collected across a gradient of cork oak ( Quercus suber ) forest fragmentation in the East Pyrenees (Albera, Spain), and they were incubated to obtain the parasitism rates.
2. Two hypotheses were tested: (1) Host-plant fragmentation may induce a decline in gall wasp populations because of area and isolation effects on local extinction and dispersal; as a consequence of that, parasitoids may decline even more strongly in fragmented habitats than their prey. (2) Host-plant fragmentation may cause a decline in gall wasp parasitoid populations that, in turn, can lead to an ecological release in their prey populations.
3. Among the eight cork oak gall wasps sampled in the study area of Albera, the gall abundances of three species ( Callirhytis glandium , Callirhytis rufescens , and Andricus hispanicus ) were significantly related to forest fragmentation. The overall abundance of gall wasps was affected by a radius of ≈ 890 m surrounding landscape, presenting constant abundances with forest loss until forest cover is reduced at ≈ 40%; below that value the abundance increased rapidly. Three inquilines and 23 parasitoids species were recorded after gall incubation. In 25 cases, species of inquilines and parasitoids were newly recorded for the corresponding host in the Iberian peninsula.
4. Although the overall parasitism rate was high (1.1), it was uncorrelated with fragmentation and with overall cynipid abundance. These results indicate that host-plant fragmentation was correlated with higher abundance of gall wasps, whereas the parasitism rate could not explain this hyper-abundance in small forest fragments.  相似文献   

7.
The knopper gallwasp Andricus quercuscalicis Burgsdorf 1783 (Hymenoptera: Cynipidae) has invaded western and northern Europe from southern and eastern Europe over the last 400 years. A. quercuscalicis has two alternating generations, which differ in phenology, structure, and host oak species. This study describes geographic variation in the community in the tiny catkin galls of the sexual generation on Turkey oak, Quercus cerris, and compares the patterns obtained with those in the community attacking the alternate agamic generation. As predicted from considerations of parasitoid recruitment to the communities of invading phytophagous insects (Cornell and Hawkins 1993), in its native range the sexual generation shows (1) higher parasitoid community species richness, (2) higher total mortality due to parasitoid attack and (3) a higher ratio of specialist to generalist parasitoid species than is evident in the invaded range. Counter to predictions, there is no indication that parasitoid community richness in the invaded range has increased with time since the arrival of the new host. Higher host mortality in the native range is due principally to a single specialist, Aulogymnus obscuripes Mayr 1877 (Hymenoptera: Eulophidae), and is not distributed evenly among parasitoid species which attack the gall-former only in this area. This contrasts with the community in Britain, where three principal generalist parasitoids cause approximately equal mortalities. The agamic gall contains a taxonomically and structurally diverse guild of parasitoid and inquiline species, associated with the changing resource provided by a large, long-lived, complex gall. In contrast, the sexual community includes a taxonomically and structurally narrow guild, associated with a resource which is structurally simple, small in size and short-lived. No parasitoid species attacks the gall-former in both generations. Surprisingly, in spite of these differences in the nature of the gall resource in the two generations, over their entire range (native and invaded) the parasitoid guilds of the two are equally species rich.  相似文献   

8.
1. Four alien cynipid gall wasps of the genus Andricus are established and still spreading in the British Isles. The order, according to the northerliness of their distribution boundary, is: A. corruptrixA. quercuscalicisA. lignicolaA. kollari. All four aliens have a sexual generation in spring on Quercus cerris (introduced to Britain) and an agamic generation in autumn on native oak species. 2. For 2 years 1994 and 1995, galls of both generations of the four alien species were sampled at eight sites from the south of England to the north of Scotland to determine the parasitoid and inquiline species that attack the new galls. The spring generations of the invading species shared a parasitoid complex of four pteromalid species. Five species of inquilines and 11 species of parasitoids emerged from the autumn galls. 3. Two colonisation events were recorded for A. lignicola and A. corruptrix. On both occasions, the spring generations were found first at the new sites, indicating that the agamic generation provides the colonisers for these invading species. After colonisation, the galls of both species were attacked by parasitoids in their first season. 4. In spring, the invading species were among the most abundant cynipids at all eight sites. By sampling the whole local community of cynipid galls, it was found that the parasitoid species attacking the spring galls of the invaders seemed to have shifted their attack to the new hosts. 5. The secondary sex ratios of the parasitoid species emerging from the sexual galls of A. quercuscalicis (the smallest of the four) showed a strong and significant male bias at all sites and in both years. Parasitoid emergence from the galls of the sexual generations of the other three species (all about equal in size) was between 60 and 70% male, and variable among sites and between years.  相似文献   

9.
Summary Larvae of the tephritid fly Eurosta solidaginis induce ball-shaped galls on the stem of tall goldenrod, Solidago altissima. Survival probability depends on gall size; in small galls the larva is vulnerable to parasitoid oviposition, whereas larvae in large galls are more frequently eaten by avian predators. Fly populations from 20 natural old fields in central Pennsylvania were monitored in 1983 and 1984 to examine the distribution of the selection intensity imposed by natural enemies, the parasitoids Eurytoma gigantea and E. obtusiventris, the inquiline Mordellistena unicolor, and the predatory birds Dendrocopus pubescens and Parus atricapillus. Mordellistena and E. obtusiventris are able to attack galls of all diameters while E. gigantea and the predatory birds preferentially assaulted small and large diameter galls, respectively. Eurosta in intermediate sized galls had the highest survivorship, hence selection had a stabilizing component. However, parasitoid attack was more frequent than bird attack, and the two did not exactly balance, thus there was also a directional component. The mean directional selection intensity on gall size was 0.21 standard deviations of the mean, indicating that larger gall size was favored. Interactions among the insect members of the Eurosta natural enemy guild are complex and frequent.  相似文献   

10.
11.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

12.
Parasitoids play an important role in ecosystem functioning through their influence on herbivorous insect populations. Theoretical and experimental evidence suggest that increased species richness can enhance and stabilize ecosystem function. It is important to understand how richness‐driven functional relationships change across environmental gradients. We investigated how temperature affected the relationship between parasitoid richness and parasitism rate in a guild of gall‐parasitoids along an elevational gradient. We collected galls at 15 sites along five elevational gradients (between 762 m and 1145 m asl) on six occasions over a year. A total of 1902 insects, including 1593 parasitoids, were reared from 12 402 galls. Parasitism rate increased significantly with temperature on all sampling occasions, except December and February. We found a significant, positive richness–parasitism relationship. This relationship, however, was weaker at higher elevations which may be linked to decreased functional efficiency of parasitoids at lower temperatures. Temporal variability in parasitism rate and parasitoid richness were significantly related, regardless of temperature. A stable functional guild of this kind may provide a more reliable ecosystem service under environmental changes.  相似文献   

13.
We examined seasonal patterns of gall morphology, growth, and survivorship of the agamic generation of a cynipid wasp, Aphelonyx glanduliferae, and discussed its mortality factors, especially from the point of view of refuge from parasitoid attack. Although the initiation period varied greatly among individual galls, the larvae of A. glanduliferae grew rapidly and reached their maximum size within 3 weeks before pupating in late September to early October. This growth period corresponded to the period when the gall walls became thinner. Parasitoid attack, which was the principal factor in the mortality of A. glanduliferae in the tree crown, was concentrated around the pupation period of the cynipid. Gall walls were significantly thinner in galls attacked by parasitoids than in those still containing a living cynipid. Therefore, the period available to parasitoids seems to be limited by both gall wall thickness and cynipid size. Thus, the growth pattern of A. glanduliferae larvae can have significance in that it narrows the window of vulnerability to parasitoids to a particular period. Although delaying gall initiation will also shorten the exposure period to parasitoid attacks, it was likely to increase the risk of death from gall abortion caused by seasonal degradation in the quality of host plant tissues. Although many cynipids were killed by disease in the galls that fell to the ground, the falling of mature galls to the ground may be another way to a parasitoid-free space. It is thus suggested that a trade-off among life history traits against multiple factors operates in the refuge of A. glanduliferae from parasitoid attack. Received: May 15, 2001 / Accepted: February 1, 2002  相似文献   

14.
Summary The parasitoids known to attack 191 phytophagous species of gall midges (Cecidomyiidae) were used to examine factors influencing parasitoid assemblage size. The number of parasitoid species a midge species supports was tested against nine variables describing geographical, biological and ecological attributes of hosts. The apparency of midge larvae was found to have the greatest influence on parasitoid assemblage size; highly visible species support more parasitoids than less visible ones. Pupation site and midge voltinism also significantly affect associated parasitoids, at least for highly apparent hosts. Biogeographic region, host-plant architecture and the plant parts infested were found to be of secondary importance. The surface texture of infested plant parts, the number of midge larvae occupying galls and the diversity of plant tissues infested have minimal apparent effects on parasitoid richness. Parasitoid assemblage size and total parasitism rates were also found to be positively correlated for 73 galling and nongalling midge species, and gallers typically suffer higher levels of parasitism than non-gallers. Using these data to test the enemy hypothesis, which proposes that the galling habit has evolved to escape attack from parasitoids, we conclude that parasitoid pressure cannot account for the presence of galls in the Cecidomyiidae.  相似文献   

15.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

16.
We describe the external morphology of the terminal-instar larvae of 30 species of Cynipoidea (Hymenoptera), with special reference to the head capsule and mouthparts. Twenty-five of the species belong to the Cynipidae and are gall inducers or phytophagous inquilines (guests) in galls, while five represent different insect-parasitic lineages of the Cynipoidea. Although we find only limited variation in body shape, the head sclerites and mandibles offer many characters of potential phylogenetic value. For instance, the mandibles of the parasitoids have one large pointed tooth, with several smaller dents along the inner margin in core figitids, whereas the phytophagous gall inducers and inquilines have mandibles with two or three blunt teeth of subequal size. The mandibles of inquiline larvae are unique in being covered by vertical striations and in having a dominating, broad second tooth. We summarize the qualitative variation among the studied terminal-instar larvae in terms of 33 morphological characters and one life-history trait and examine the phylogenetic implications of these data by running parsimony analyses under uniform character weights and under implied weights (Goloboff weights). The analysis under uniform weights is poorly resolved but the relationships suggested by the implied-weights analysis are largely congruent with previous analyses of adult morphology and molecular data. The larval data support inclusion of the genus Liposthenes in the Neaylax – Isocolus clade, in agreement with the molecular data but in weak conflict with adult morphology. However, the larval data agree with adult morphology and conflict with the molecular data in supporting monophyly of the inquilines.  相似文献   

17.
Simulation models presented here show that gall size of Eurosta solidaginisFitch (Diptera: Tephritidae) is a reliable predictor of its quality as a host to the parasitoid Eurytoma giganteaWalsh (Hymenoptera; Eurytomidae). The nutritional value of a gall to a parasitoid increases with diameter, but so does the likelihood that ovipositing parasitoids will fail to penetrate to the gall's central chamber. Despite the large differences in gall quality with size, this parasitoid seems incapable of distinguishing large, impenetrable galls from smaller, more suitable ones (Weis, A. E., et al., Ecol. Entomol. 10:341–348, 1985). This paper shows that Eurytomais capable of quick rejection of nonhost galls of similar size and shape to suitably sized host galls. Several lines of reasoning are explored to understand the seemingly maladaptive lack of sizediscrimination ability on host galls.  相似文献   

18.
  1. Leptocybe invasa is native to Australia and induces galls on various species of Eucalyptus. Two genetically distinct lineages of this wasp have been detected outside its native range, namely, Leptocybe Lineage A and Leptocybe Lineage B.
  2. The parasitoid Selitrichodes neseri was released in South Africa as a biological control agent against L. invasa. Another parasitoid of L. invasa, Quadrastichus mendeli, as well as Megastigmus zebrinus (parasitoid) and Megastigmus pretorianensis (role unknown), have also been recorded emerging from L. invasa galls. The objective of this study was to investigate the interactions between the different hymenopterans associated with L. invasa galls in South Africa.
  3. L. invasa galls were dissected and species-specific primers and restriction enzymes were used to identify the larvae where interactions were noted.
  4. S. neseri, Q. mendeli and M. zebrinus were confirmed to parasitize Leptocybe Lineage A, and S. neseri was confirmed to parasitize Leptocybe Lineage B. Furthermore, there were direct interactions between these parasitoids, where parasitoids were found parasitising each other. The gall forming experiment confirmed that M. pretorianensis is not a gall former, but other potential roles remain uncertain.
  相似文献   

19.
Abstract.  1. The strength or density dependence of pairwise species interactions can depend on the presence or absence of other species, especially potential mutualists.
2. The gall wasp Disholcaspis eldoradensis induces plant galls that secrete a sweet honeydew from their top surfaces while the wasp larvae are active. These galls are actively tended by Argentine ants, which collect the honeydew and drive off parasitoids attempting to attack the gall wasp.
3. When ants were excluded, the total rate of parasitism by seven species of parasitoids increased by 36%, and the rate of gall-wasp emergence decreased by 54%.
4. The total percentage parasitism was affected by gall density when ants were excluded but not when ants were unmanipulated, suggesting a change in parasitoid functional responses due to ant tending.
5. In addition, excluding ants significantly altered the proportions of different parasitoid species that emerged from galls; one parasitoid species increased from 1% to 34%, and another decreased from 46% to 19%.
6. The invasive Argentine ants studied are capable of maintaining the mutualism with the gall wasps that evolved in the presence of different ant species and also act as a selective filter for the local community of generalist parasitoids trying to attack this gall species.  相似文献   

20.
Studies of thermal level‐related asynchrony in a host–parasitoid relationship are necessary to understand the effects of climate change on new host–parasitoid interactions. In the Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) and its Chalcidoidea parasitoids, phenological synchrony is assumed to be weather‐dependent in a new area of expansion. To evaluate the effects of environmental thermal regimes on the host, a phenology model for different cynipid stages (larvae, pupae, adults, and adult emergence) and a host–parasitoid phenological estimator are developed in three chestnut fields during two successive growth seasons and subsequently validated in areas with chestnut fields at two different altitudes. Comparisons of the timings of the juvenile and adult stages with those of the parasitoid complex demonstrate that the shortest period of occurrence for cynipids within galls has negative effects on the host–parasitoid relationships at higher temperature levels, thereby increasing phenological asynchrony for some parasitoids species. Reducing the development time of pupae and adults decreases the likelihood of success for some parasitoid species at higher temperature levels. We also record the extension of the gall wasp development time (approximately 15 days) at higher altitudes (linked to a lower mean temperature of approximately 1.5 °C). These results highlight how parasitization on the new hosts is dependent on the host phenology and, in the present study, is limited by the short duration of the presence of the host in galls, which could explain the considerable differences in cynipid gall wasp parasitization recorded at different altimeters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号