首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
An enzyme has been purified to homogeneity from barley seedlings which has `proline dehydrogenase' and the pyrroline-5-carboxylic acid reductase activities. The purification achieved is 39,000-fold as calculated from the proline dehydrogenase activity. The subunit molecular weight of the protein is 30 kilodaltons. The native enzyme has molecular weights up to 480 kilodaltons, depending on the buffer environment. From the pH profiles, the specific activities and thermodynamic considerations, it is concluded that the plant proline dehydrogenase functions in vivo as a pyrroline-5-carboxylate reductase.  相似文献   

2.
Using Affigel Blue and oxamate-agarose affinity chromatography, lactate dehydrogenase (LDH) was purified 2000-fold from hypoxically induced barley roots. Molecular weights of the native and sodium dodecyl sulfate-denatured LDH protein were 157 and 40 kilodaltons, respectively, indicating a tetramer. Purified barley LDH was very similar in size and kinetic properties to potato LDH. However, their amino acid compositions differed substantially and antibodies raised against barley LDH did not cross-react with potato LDH on immunoblots, implying that the barley and potato LDHs are not closely related proteins. In vivo [35S] methionine labeling and immunoprecipitation experiments indicated that hypoxia increased the rate of LDH protein synthesis, and immunoblot analysis showed that LDH protein levels rose during hypoxia. We conclude that increased enzyme synthesis plays a major part in the induction of LDH enzyme activity by low O2 levels in barley roots.  相似文献   

3.
Sugar beet leaves (Beta vulgaris L.) contained up to five endoamylases, two exoamylases, and a single debranching enzyme. Four of the endoamylases and the debranching enzyme were present in the chloroplast. The chloroplastic starch-debranching enzyme and an apoplastic endoamylase were copurified from mature leaves of sugar beet by 35 to 50% ammonium sulfate precipitation and chromatography on diethylaminoethyl-Sephacryl, β-cyclodextrin Sepharose 6B, and Sephadex G-150. The debranching enzyme, which was purified to homogeneity, had a molecular mass of 100 kilodaltons and a pH optimum of 5.5. It showed a high activity with pullulan as a substrate, low activity with soluble starch and amylopectin, and no activity with native starch grains isolated from sugar beet leaves. The endoamylase, which was partially purified, had a molecular mass of 43,000 kilodaltons, a pH optimum of 6.5, required calcium for activity and thermal stability, and showed an ability to hydrolyze native starch grains.  相似文献   

4.
Cytosolic NADP-specific isocitrate dehydrogenase was isolated from leaves of Pisum sativum. The purified enzyme was obtained by ammonium sulfate fractionation, ion exchange, affinity, and gel filtration chromatography. The purification procedure yields greater than 50% of the total enzyme activity originally present in the crude extract. The enzyme has a native molecular weight of 90 kilodaltons and is resolved into two catalytically active bands by isoelectric focusing. Purified NADP-isocitrate dehydrogenase exhibited Km values of 23 micromolar for dl-isocitrate and 10 micromolar for NADP, and displayed optimum activity at pH 8.5 with both Mg2+ and Mn2+.  相似文献   

5.
The lipoamide dehydrogenase of the glycine decarboxylase complex was purified to homogeneity (8 U/mg) from cells of the anaerobe Eubacterium acidaminophilum that were grown on glycine. In cell extracts four radioactive protein fractions labeled with D-[2-14C]riboflavin could be detected after gel filtration, one of which coeluted with lipoamide dehydrogenase activity. The molecular mass of the native enzyme could be determined by several methods to be 68 kilodaltons, and an enzyme with a molecular mass of 34.5 kilodaltons was obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblot analysis of cell extracts separated by sodium dodecyl sulfate-polyacrylamide or linear polyacrylamide gel electrophoresis resulted in a single fluorescent band. NADPH instead of NADH was the preferred electron donor of this lipoamide dehydrogenase. This was also indicated by Michaelis constants of 0.085 mM for NADPH and 1.1 mM for NADH at constant lipoamide and enzyme concentrations. The enzyme exhibited no thioredoxin reductase, glutathione reductase, or mercuric reductase activity. Immunological cross-reactions were obtained with cell extracts of Clostridium cylindrosporum, Clostridium sporogenes, Clostridium sticklandii, and bacterium W6, but not with extracts of other glycine- or purine-utilizing anaerobic or aerobic bacteria, for which the lipoamide dehydrogenase has already been characterized.  相似文献   

6.
Good AG  Muench DG 《Plant physiology》1992,99(4):1520-1525
Alanine aminotransferase (AlaAT, EC 2.6.1.2) is an enzyme that is induced under anaerobic conditions in cereal roots. In barley (Hordeum vulgare L.) roots, there are a number of isoforms of AlaAT. We have identified the anaerobically induced isoform and have purified it to homogeneity. The isolation procedure involved a two-step ammonium sulfate precipitation, gel filtration, ion-exchange chromatography, and chromatofocusing. The enzyme was purified approximately 350-fold to a specific activity of 2231 units/milligram protein. The apparent molecular masses of the native and sodium dodecyl sulfate-denatured AlaAT proteins are 97 and 50 kilodaltons, respectively, indicating that the native enzyme is probably a homodimer. AlaAT has a number of interesting characteristics when compared with other plant aminotransferases. AlaAT does not require the presence of pyridoxyl-5-phosphate to retain its activity, and it appears to be very specific in the reactions that it will catalyze.  相似文献   

7.
Difference in the growth response to submergence between coleoptiles and roots of rice (Oryza sativa L.) was investigated in 9-d-old rice seedlings. The coleoptile length in the submergence condition was much greater than that in aerobic condition, whereas the root length in the submergence condition was less than that in the aerobic condition. Alcohol dehydrogenase (ADH) activity in the coleoptiles in the submergence condition was much greater than that in the aerobic condition, but ADH activity in the roots in the submergence condition increased slightly. These results suggest that the preferential ADH induction in rice seedlings may contribute to the difference in the growth response between the coleoptiles and roots under low oxygen conditions.  相似文献   

8.
ADPglucose pyrophosphorylase from developing endosperm tissue of starchy maize (Zea mays) was purified 88-fold to a specific activity of 34 micromoles α-glucose-1-P produced per minute per milligram protein. Rabbit antiserum to purified spinach leaf ADPglucose pyrophosphorylase was able to inhibit pyrophosphorolysis activity of the purified enzyme by up to 90%. The final preparation yielded four major protein staining bands following sodium dodecyl sulfate polyacrylamide gel electrophoresis. When analyzed by Western blot hybridization only the fastest migrating, 54 kilodaltons, protein staining band cross-reacted with affinity purified rabbit antispinach leaf ADPglucose pyrophosphorylase immunoglobulin. The molecular mass of the native enzyme was estimated to be 230 kilodaltons. Thus, maize endosperm ADPglucose pyrophosphorylase appears to be comprised of four subunits. This is in contrast to the respective subunit and native molecular masses of 96 and 400 kilodaltons reported for a preparation of maize endosperm ADPglucose pyrophosphorylase (Fuchs RL and JO Smith 1979 Biochim Biophys Acta 556: 40-48). Proteolytic degradation of maize endosperm ADPglucose pyrophosphorylase appears to occur during incubation of crude extracts at 30°C or during the partial purification of the enzyme according to a previously reported procedure (DB Dickinson, J Preiss 1969 Arch Biochem Biophys 130: 119-128). The progressive appearance of a 53 kilodalton antigenic peptide suggested the loss of a 1 kilodalton proteolytic fragment from the 54 kilodalton subunit. The complete conservation of the 54 kilodalton subunit structure following extraction of the enzyme in the presence of phenylmethylsulfonyl fluoride and/or chymostain was observed. The allosteric and catalytic properties of the partially purified proteolytic degraded versus nondegraded enzyme were compared. The major effect of proteolysis was to enhance enzyme activity in the absence of added activator while greatly decreasing its sensitivity to the allosteric effectors 3-P-glycerate and inorganic phosphate.  相似文献   

9.
A ferric leghemoglobin reductase from the cytosol of soybean (Glycine max) root nodules was purified to homogeneity and partially characterized. The enzyme is a flavoprotein with flavin adenine dinucleotide as the prosthetic group and consists of two identical subunits, each having a molecular mass of 54 kilodaltons. The pure enzyme shows a high activity for ferric leghemoglobin reduction with NADH as the reductant in the absence of any exogenous mediators. The enzyme also exhibits NADH-dependent 2,6-dichloroindophenol reductase activity. A sequence of the first 50 N-terminal amino acids of the purified protein was obtained. Comparisons with known protein sequences have shown that the sequence of the ferric leghemoglobin reductase is highly related to those of the flavin-nucleotide disulfide oxido-reductases, especially dihydrolipoamide dehydrogenase of the pyruvate dehydrogenase complex.  相似文献   

10.
Mitochondria isolated from the taproot of beet (Beta vulgaris) were used in an effort to identify and partially purify the proteins constituting the exogenous NADH dehydrogenase. Three NAD(P)H dehydrogenases are released from these mitochondria by sonication, and these enzymes were partially purified using fast protein liquid chromatography. One of the enzymes, designated peak I, is capable of oxidizing NADPH and the β form of NADH. The other two activities, peaks II and III, oxidize only β-NADH. All three peaks are insensitive to divalent cation chelators and a complex I inhibitor, rotenone. The major component to peak I is a polypeptide with an apparent molecular mass of approximately 42 kilodaltons. Peak I activity was insensitive to platanetin, a specific inhibitor of the exogenous dehydrogenase, and insensitive to added Ca2+ or Mg2+. Peak I displayed a broad pH activity profile with an optimum between 7.5 and 8.0 for both NADPH and NADH. Purified peak II gave a single polypeptide of about 32 kilodaltons, had a pH optimum between 7.0 and 7.5, and was slightly stimulated by Ca2+ and Mg2+. As with peak I, platanetin had no effect on peak II activity. Peak III was not purified completely, but contained two major polypeptides with apparent molecular masses of 55 and 40 kilodaltons. This enzyme was not affected by Ca2+ and Mg2+, but was inhibited by platanetin. The peak III enzyme had a rather sharp pH optimum of approximately 6.5 to 6.6. The above data indicate that peak III activity is likely the exogenous NADH dehydrogenase.  相似文献   

11.
Abstract Aerobically germinated seedlings of rice and Echinochloa were found to survive when placed in an anaerobic environment for 4 d, whereas pea and maize seedlings did not. Although root and shoot growth were inhibited in rice and Echinochloa under anaerobiosis, growth resumed when the seedlings were returned to aerobic conditions. Alcohol dehydrogenase (ADH) activity increased more, and protein synthesis was greater, in the shoots than in the roots under anaerobic conditions. These results suggest that, in anaerobiosis-tolerant species, ADH activity and protein synthesis in the shoots represents or results from metabolic adaptations to low oxygen. These results are discussed in terms of plant establishment and growth in a low-oxygen environment.  相似文献   

12.
Alcohol dehydrogenase and an inactivator from rice seedlings   总被引:6,自引:4,他引:2       下载免费PDF全文
Alcohol dehydrogenase (ADH) was measured in the various organs of rice seedlings (Oryza sativa) growing in air. In extracts from ungerminated seeds, the ADH is stable, but in extracts from seedlings more than 2 days old the enzyme initially present loses activity in a time- and temperature-dependent fashion, due to the presence of an inactivating component which increases with age in roots and shoots. The inactivation can be prevented completely by dithiothreitol, and when this is included in the extraction medium the apparent loss of total ADH in roots and shoots with age is not observed. In seedlings grown in N2, ADH levels in coleoptile extracts are higher than those in air, the enzyme is stable, and no inactivator can be detected. When seedlings grown for 5 days in air were transferred to N2 for 3 days, ADH levels increased and there was a decline in inactivator activity. Transfer back to air after 1 day in N2 led to loss of the accumulated ADH and increase in inactivator. These reciprocal changes and the fact that the inactivator is absent from coleoptiles of seedlings grown in N2 appear to suggest a regulatory role for the inactivator in vivo. However, it is clear that high levels of inactivator and ADH can exist in cells of seedlings grown in air for long periods without loss of enzyme activity, and it is argued that they must normally be separately compartmented.  相似文献   

13.
Glucose-6-phosphate dehydrogenase is a rate-limiting enzyme of pentose phosphate pathway, existing in cytosolic and plastidic compartments of higher plants. A novel gene encoding plastidic glucose-6-phosphate dehydrogenase was isolated from rice (Oryza sativa L.) and designated OsG6PDH2 in this article. Through semiquantitative RT-PCR approach it was found that OsG6PDH2 mRNA was weakly expressed in rice leaves, stems, immature spikes or flowered spikes, and a little higher in roots. However, the expression of OsG6PDH2 in rice seedlings was significantly induced by dark treatment. The complete opening reading frame (ORF) of OsG6PDH2 was inserted into pET30a (+), and expressed in Escherichia coli strain BL21 (DE3). The enzyme activity assay of transformed bacterial cells indicated that OsG6PDH2 encoding product had a typical function of glucose-6-phosphate dehydrogenase.  相似文献   

14.
15.
Distinct organellar forms of the β-oxidation enzyme enoyl-coenzyme A (CoA) hydratase were partially purified and characterized from 2-day germinated pea (Pisum sativum L.) seedlings. The purification was accomplished by disruption of purified mitochondria or peroxisomes, (NH4)2SO4 fractionation, and gel permeation chromatography using a column of Sephacryl S-300. The organellar isozymes had distinct kinetic constants for the substrates 2-butenoyl-CoA and 2-octenoyl-CoA, and could be easily distinguished by differences in thermostability and salt activation. The peroxisomal isozyme had a native Mr of 75,000 and appeared to be a typical bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, while the mitochondrial isozyme had a native Mr of 57,000 and did not have associated dehydrogenase activity. Western blots of total pea mitochondrial proteins gave a positive signal when probed with anti-rat liver mitochondrial enoyl-CoA hydratase antibodies but there was no signal when blots of total peroxisomal proteins were probed.  相似文献   

16.
A cysteine endopeptidase (EC 3.4.22.-) present in cotyledons of mung bean (Vigna radiata) seedlings was purified to homogeneity, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This proteinase has an apparent molecular mass of 33 kilodaltons as estimated by SDS-PAGE and belongs to the class of cysteine proteinases as judged by the effects of various proteinase inhibitors on the activity of the enzyme. When proangiotensin is used as a substrate, the enzyme preferentially hydrolyzes the peptide bonds formed by the amino group of Leu or lle in this oligopeptide chain; for the enzyme to cleave those bonds, peptide sequences consisting of at least three amino acid residues on the amino side of Leu or lle must be present. The proteinase readily digests globulin present in mung bean cotyledons to smaller polypeptides.  相似文献   

17.
Reduction of FeIIIEDTA by excised roots of soybean seedlings (Glycine max L.) is stimulated by l-malate in the bathing solution. Reduction occurs much more rapidly with roots of seedlings grown in the absence of iron than with roots of seedlings grown with iron. Cell-wall preparations from these roots catalyze reduction of FeIIIEDTA by NADH. They also contain NAD+-dependent l-malate dehydrogenase. Enzymic activity of the cell-wall preparations is not affected by previous iron nutrition of the plants, but the amount of l-malate in the roots is increased when seedlings have been deprived of iron. We propose that reduction of iron before absorption by soybean roots occurs in the cell-wall space, with l-malate secreted from the roots serving as the source of electrons. Part of the iron reductase activity of the cell walls can be solubilized by extraction with 1 molar NaCl. The enzyme has been partially purified.  相似文献   

18.
Squalene synthetase, an integral membrane protein and the first committed enzyme for sterol biosynthesis, was solubilized and partially purified from tobacco (Nicotiana tabacum) cell suspension cultures. Tobacco microsomes were prepared and the enzyme was solubilized from the lipid bilayer using a two-step procedure. Microsomes were initially treated with concentrations of octyl-β-d-thioglucopyranoside and glycodeoxycholate below their critical micelle concentration, 4.5 and 1.1 millimolar, respectively, to remove loosely associated proteins. Complete solubilization of the squalene synthetase enzyme activity was achieved after a second treatment at detergent concentrations above or at their critical micelle concentration, 18 and 2.2 millimolar, respectively. The detergent-solubilized enzyme was further purified by a combination of ultrafiltration, gel permeation, and Fast Protein Liquid Chromatography anion exchange. A 60-fold purification and 20% recovery of the enzyme activity was achieved. The partially purified squalene synthetase protein was used to generate polyclonal antibodies from mice that efficiently inhibited synthetase activity in an in vitro assay. The apparent molecular mass of the squalene synthetase protein as determined by immunoblot analysis of the partially purified squalene synthetase protein separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 47 kilodaltons. The partially purified squalene synthetase activity was optimal at pH 6.0, exhibited a Km for farnesyl diphosphate of 9.5 micromolar, and preferred NADPH as a reductant rather than NADH.  相似文献   

19.
Aspartate aminotransferase (AAT), a key enzyme in the biosynthesis of aspartate and asparagine, occurs as two forms in alfalfa (Medicago sativa L.), AAT-1 and AAT-2. Both forms were purified to near homogeneity, and high titer polyclonal antibodies produced to the native proteins. Alfalfa AAT-1 was purified from root suspension culture cells, while AAT-2 was purified from effective root nodules. Antibodies prepared to AAT-1 and used as probes for western blots readily recognized native and SDS forms of AAT-1 but did not recognize either native or SDS forms of AAT-2. Conversely, antibodies to AAT-2 readily recognized native and SDS forms of AAT-2 but did not recognize AAT-1. Immunotitrations further confirmed the immunological distinction between AAT-1 and AAT-2. AAT-1 antibodies immunotitrated 100% of the in vitro activity of purified AAT-1 but had no effect on AAT-2 in vitro activity. Likewise, AAT-2 antibodies removed 100% of the in vitro activity of purified AAT-2 but did not affect AAT-1 in vitro activity. Sequential titration of total AAT activity from roots and nodules showed that AAT-1 comprised the major form (62%) of AAT in roots, while AAT-2 was the predominant form (90%) in nodules. Last, SDS-PAGE western blots showed that the molecular masses of AAT-1 and AAT-2 were 42 and 40 kilodaltons, respectively. These data indicate that AAT is under the control of at least two distinct genes in alfalfa.  相似文献   

20.
Abscisic Acid induces anaerobiosis tolerance in corn   总被引:6,自引:3,他引:3       下载免费PDF全文
Flooding is a frequently occurring environmental stress that can severely affect plant growth. This study shows that treatment of corn (Zea mays L.) seedlings with abscisic acid (ABA) increases their tolerance to anoxia 10-fold over untreated seedlings and twofold over seedlings treated with water. Corn seedlings stressed anoxically for 1 day showed only 8% survival when planted in vermiculite. Pretreatment of root tips with 100 micromolar ABA or water for 24 hours before the 1 day anoxic stress increased the anoxic survivability of seedlings to 87% and 47%, respectively. Cycloheximide (5 milligrams per liter), added together with ABA, reduced the seedling survival rate, indicating that the induction of anoxic tolerance in corn by ABA was partly a result of the synthesis of new proteins. ABA treatment induced a threefold increase in alcohol dehydrogenase enzyme activity in corn roots. However, after 24 h of anoxia, alcohol dehydrogenase enzyme activity between the ABA-pretreated and non-pretreated corn roots was not significantly different. The results indicated that ABA played an important role in inducing anoxic tolerance in corn and that the induced tolerance was probably mediated by an increase in alcohol dehydrogenase enzyme activity before the anoxic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号