首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Two eukaryotic pathways for processing double-strand breaks (DSBs) as crossovers have been described, one dependent on the MutL homologs Mlh1 and Mlh3, and the other on the structure-specific endonuclease Mus81. Mammalian MUS81 has been implicated in maintenance of genomic stability in somatic cells; however, little is known about its role during meiosis. Mus81-deficient mice were originally reported as being viable and fertile, with normal meiotic progression; however, a more detailed examination of meiotic progression in Mus81-null animals and WT controls reveals significant meiotic defects in the mutants. These include smaller testis size, a depletion of mature epididymal sperm, significantly upregulated accumulation of MLH1 on chromosomes from pachytene meiocytes in an interference-independent fashion, and a subset of meiotic DSBs that fail to be repaired. Interestingly, chiasmata numbers in spermatocytes from Mus81−/− animals are normal, suggesting additional integrated mechanisms controlling the two distinct crossover pathways. This study is the first in-depth analysis of meiotic progression in Mus81-nullizygous mice, and our results implicate the MUS81 pathway as a regulator of crossover frequency and placement in mammals.  相似文献   

2.
During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.  相似文献   

3.
BACKGROUND AND AIMS: Mismatch repair proteins play important roles during meiotic recombination in the budding yeast Saccharomyces cerevisiae and most eukaryotic organisms studied to date. To study the functions of the mismatch repair protein Mlh2p in meiosis, we constructed mlh2Delta strains and measured rates of crossing over, gene conversion, post-meiotic segregation and spore viability. We also analysed mlh1Delta, mlh3Delta, msh4Delta, msh5Delta, exo1Delta and mus81Delta mutant strains singularly and in various combinations. RESULTS: Loss of MLH2 resulted in a small but significant decrease in spore viability and a significant increase in gene conversion frequencies but had no apparent effect on crossing over. Deletion of MLH2 in mlh3Delta, msh4Delta or msh5Delta strains resulted in significant proportion of the "lost" crossovers found in single deletion strains being regained in some genetic intervals. We and others propose that there are at least two pathways to generate crossovers in yeast (Ross-Macdonald and Roeder, 1994; Zalevsky et al., 1999; Khazanehdari and Borts, 2000; Novak et al., 2001; de los Santos et al., 2003). Most recombination intermediates are processed by the "major", Msh4-dependent pathway, which requires the activity of Mlh1p/Mlh3p/Msh4p/Msh5p as well as a number of other proteins. The minor pathway(s) utilizes Mms4p/Mus81p. We suggest that the absence of Mlh2p allows some crossovers from the MSH4 pathway to traverse the MUS81-dependent pathway.  相似文献   

4.
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.  相似文献   

5.
Competing crossover pathways act during meiosis in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
Argueso JL  Wanat J  Gemici Z  Alani E 《Genetics》2004,168(4):1805-1816
In Saccharomyces cerevisiae the MSH4-MSH5, MLH1-MLH3, and MUS81-MMS4 complexes act to promote crossing over during meiosis. MSH4-MSH5, but not MUS81-MMS4, promotes crossovers that display interference. A role for MLH1-MLH3 in crossover control is less clear partly because mlh1Delta mutants retain crossover interference yet display a decrease in crossing over that is only slightly less severe than that seen in msh4Delta and msh5Delta mutants. We analyzed the effects of msh5Delta, mlh1Delta, and mms4Delta single, double, and triple mutants on meiotic crossing over at four consecutive genetic intervals on chromosome XV using newly developed computer software. mlh1Delta mms4Delta double mutants displayed the largest decrease in crossing over (13- to 15-fold) of all mutant combinations, yet these strains displayed relatively high spore viability (42%). In contrast, msh5Delta mms4Delta and msh5Delta mms4Delta mlh1Delta mutants displayed smaller decreases in crossing over (4- to 6-fold); however, spore viability (18-19%) was lower in these strains than in mlh1Delta mms4Delta strains. These data suggest that meiotic crossing over can occur in yeast through three distinct crossover pathways. In one pathway, MUS81-MMS4 promotes interference-independent crossing over; in a second pathway, both MSH4-MSH5 and MLH1-MLH3 promote interference-dependent crossovers. A third pathway, which appears to be repressed by MSH4-MSH5, yields deleterious crossovers.  相似文献   

6.
Current models for meiotic recombination require that crossovers derive from the resolution of a double-Holliday junction (dHJ) intermediate. In prokaryotes, enzymes responsible for HJ resolution are well characterized but the identification of a eukaryotic nuclear HJ resolvase has been elusive. Indirect evidence suggests that MUS81 from humans and fission yeast encodes a HJ resolvase. We provide three lines of evidence that Mus81/Mms4 is not the major meiotic HJ resolvase in S. cerevisiae: (1) MUS81/MMS4 is required to form only a distinct subset of crossovers; (2) rather than accumulating, dHJ intermediates are reduced in an mms4 mutant; and (3) expression of a bacterial HJ resolvase has no suppressive effect on mus81 meiotic phenotypes. Our analysis also reveals the existence of two distinct classes of crossovers in budding yeast. Class I is dependent upon MSH4/MSH5 and exhibits crossover interference, while class II is dependent upon MUS81/MMS4 and exhibits no interference. mms4 specifically reduces crossing over on small chromosomes, which are known to undergo less interference. The correlation between recombination rate and degree of interference to chromosome size may therefore be achieved by modulating the balance between class I/class II crossovers.  相似文献   

7.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.Key words: Mek1, meiotic recombination, phosphorylation, Rdh54, Mus81  相似文献   

8.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.  相似文献   

9.
The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.  相似文献   

10.
During meiotic recombination, induced double-strand breaks (DSBs) are processed into crossovers (COs) and non-COs (NCO); the former are required for proper chromosome segregation and fertility. DNA synthesis is essential in current models of meiotic recombination pathways and includes only leading strand DNA synthesis, but few genes crucial for DNA synthesis have been tested genetically for their functions in meiosis. Furthermore, lagging strand synthesis has been assumed to be unnecessary. Here we show that the Arabidopsis thaliana DNA REPLICATION FACTOR C1 (RFC1) important for lagging strand synthesis is necessary for fertility, meiotic bivalent formation, and homolog segregation. Loss of meiotic RFC1 function caused abnormal meiotic chromosome association and other cytological defects; genetic analyses with other meiotic mutations indicate that RFC1 acts in the MSH4-dependent interference-sensitive pathway for CO formation. In a rfc1 mutant, residual pollen viability is MUS81-dependent and COs exhibit essentially no interference, indicating that these COs form via the MUS81-dependent interference-insensitive pathway. We hypothesize that lagging strand DNA synthesis is important for the formation of double Holliday junctions, but not alternative recombination intermediates. That RFC1 is found in divergent eukaryotes suggests a previously unrecognized and highly conserved role for DNA synthesis in discriminating between recombination pathways.  相似文献   

11.
Osman F  Dixon J  Doe CL  Whitby MC 《Molecular cell》2003,12(3):761-774
The double Holliday junction (dHJ) is generally regarded to be a key intermediate of meiotic recombination, whose resolution is critical for the formation of crossover recombinants. In fission yeast, the Mus81-Eme1 endonuclease has been implicated in resolving dHJs. Consistent with this role, we show that Mus81-Eme1 is required for generating meiotic crossovers. However, purified Mus81-Eme1 prefers to cleave junctions that mimic those formed during the transition from double-strand break to dHJ. Crucially, these junctions are cleaved by Mus81-Eme1 in precisely the right orientation to guarantee the formation of a crossover every time. These data demonstrate how crossovers could arise without forming or resolving dHJs using an enzyme that is widely conserved amongst eukaryotes.  相似文献   

12.
DNA repair mechanisms in mitotically proliferating cells avoid generating crossovers, which can contribute to genome instability. Most models for the production of crossovers involve an intermediate with one or more four-stranded Holliday junctions (HJs), which are resolved into duplex molecules through cleavage by specialized endonucleases. In vitro studies have implicated three nuclear enzymes in HJ resolution: MUS81-EME1/Mms4, GEN1/Yen1, and SLX4-SLX1. The Bloom syndrome helicase, BLM, plays key roles in preventing mitotic crossover, either by blocking the formation of HJ intermediates or by removing HJs without cleavage. Saccharomyces cerevisiae mutants that lack Sgs1 (the BLM ortholog) and either Mus81-Mms4 or Slx4-Slx1 are inviable, but mutants that lack Sgs1 and Yen1 are viable. The current view is that Yen1 serves primarily as a backup to Mus81-Mms4. Previous studies with Drosophila melanogaster showed that, as in yeast, loss of both DmBLM and MUS81 or MUS312 (the ortholog of SLX4) is lethal. We have now recovered and analyzed mutations in Drosophila Gen. As in yeast, there is some redundancy between Gen and mus81; however, in contrast to the case in yeast, GEN plays a more predominant role in responding to DNA damage than MUS81-MMS4. Furthermore, loss of DmBLM and GEN leads to lethality early in development. We present a comparison of phenotypes occurring in double mutants that lack DmBLM and either MUS81, GEN, or MUS312, including chromosome instability and deficiencies in cell proliferation. Our studies of synthetic lethality provide insights into the multiple functions of DmBLM and how various endonucleases may function when DmBLM is absent.  相似文献   

13.
Although the SLX4 complex, which includes structure-specific nucleases such as XPF, MUS81, and SLX1, plays important roles in the repair of several kinds of DNA damage, the function of SLX1 in the germline remains unknown. Here we characterized the endonuclease activities of the Caenorhabditis elegans SLX-1-HIM-18/SLX-4 complex co-purified from human 293T cells and determined SLX-1 germline function via analysis of slx-1(tm2644) mutants. SLX-1 shows a HIM-18/SLX-4-dependent endonuclease activity toward replication forks, 5'-flaps, and Holliday junctions. slx-1 mutants exhibit hypersensitivity to UV, nitrogen mustard, and camptothecin, but not gamma irradiation. Consistent with a role in DNA repair, recombination intermediates accumulate in both mitotic and meiotic germ cells in slx-1 mutants. Importantly, meiotic crossover distribution, but not crossover frequency, is altered on chromosomes in slx-1 mutants compared to wild type. This alteration is not due to changes in either the levels or distribution of double-strand breaks (DSBs) along chromosomes. We propose that SLX-1 is required for repair at stalled or collapsed replication forks, interstrand crosslink repair, and nucleotide excision repair during mitosis. Moreover, we hypothesize that SLX-1 regulates the crossover landscape during meiosis by acting as a noncrossover-promoting factor in a subset of DSBs.  相似文献   

14.
Trowbridge K  McKim K  Brill SJ  Sekelsky J 《Genetics》2007,176(4):1993-2001
Mus81-Mms4 (Mus81-Eme1 in some species) is a heterodimeric DNA structure-specific endonuclease that has been implicated in meiotic recombination and processing of damaged replication forks in fungi. We generated and characterized mutations in Drosophila melanogaster mus81 and mms4. Unlike the case in fungi, we did not find any role for MUS81-MMS4 in meiotic crossing over. A possible role for this endonuclease in repairing double-strand breaks that arise during DNA replication is suggested by the finding that mus81 and mms4 mutants are hypersensitive to camptothecin; however, these mutants are not hypersensitive to other agents that generate lesions that slow or block DNA replication. In fungi, mus81, mms4, and eme1 mutations are synthetically lethal with mutations in genes encoding RecQ helicase homologs. Similarly, we found that mutations in Drosophila mus81 and mms4 are synthetically lethal with null mutations in mus309, which encodes the ortholog of the Bloom Syndrome helicase. Synthetic lethality is associated with high levels of apoptosis in proliferating tissues. Lethality and elevated apoptosis were partially suppressed by a mutation in spn-A, which encodes the ortholog of the strand invasion protein Rad51. These findings provide insights into the causes of synthetic lethality.  相似文献   

15.
Repair of interstrand crosslinks (ICLs) requires multiple-strand incisions to separate the two covalently attached strands of DNA. It is unclear how these incisions are generated. DNA double-strand breaks (DSBs) have been identified as intermediates in ICL repair, but enzymes responsible for producing these intermediates are unknown. Here we show that Mus81, a component of the Mus81-Eme1 structure-specific endonuclease, is involved in generating the ICL-induced DSBs in mouse embryonic stem (ES) cells in S phase. Given the DNA junction cleavage specificity of Mus81-Eme1 in vitro, DNA damage-stalled replication forks are suitable in vivo substrates. Interestingly, generation of DSBs from replication forks stalled due to DNA damage that affects only one of the two DNA strands did not require Mus81. Furthermore, in addition to a physical interaction between Mus81 and the homologous recombination protein Rad54, we show that Mus81(-/-) Rad54(-/-) ES cells were as hypersensitive to ICL agents as Mus81(-/-) cells. We propose that Mus81-Eme1- and Rad54-mediated homologous recombination are involved in the same DNA replication-dependent ICL repair pathway.  相似文献   

16.
Individuals with Fanconi anemia (FA) are susceptible to bone marrow failure, congenital abnormalities, cancer predisposition and exhibit defective DNA crosslink repair. The relationship of this repair defect to disease traits remains unclear, given that crosslink sensitivity is recapitulated in FA mouse models without most of the other disease-related features. Mice deficient in Mus81 are also defective in crosslink repair, yet MUS81 mutations have not been linked to FA. Using mice deficient in both Mus81 and the FA pathway protein FancC, we show both proteins cooperate in parallel pathways, as concomitant loss of FancC and Mus81 triggered cell-type-specific proliferation arrest, apoptosis and DNA damage accumulation in utero. Mice deficient in both FancC and Mus81 that survived to birth exhibited growth defects and an increased incidence of congenital abnormalities. This cooperativity of FancC and Mus81 in developmental outcome was also mirrored in response to crosslink damage and chromosomal integrity. Thus, our findings reveal that both pathways safeguard against DNA damage from exceeding a critical threshold that triggers proliferation arrest and apoptosis, leading to compromised in utero development.  相似文献   

17.
The yeast heterodimeric Mus81-Mms4 complex possesses a structure-specific endonuclease activity that is critical for the restart of stalled replication forks and removal of toxic recombination intermediates. Previously, we reported that Mus81-Mms4 and Rad27 (yeast FEN1, another structure-specific endonuclease) showed mutual stimulation of nuclease activity. In this study, we investigated the interactions between human FEN1 and MUS81-EME1 or MUS81-EME2, the human homologs of the yeast Mus81-Mms4 complex. We found that both MUS81-EME1 and MUS81-EME2 increased the activity of FEN1, but FEN1 did not stimulate the activity of MUS81-EME1/EME2. The MUS81 subunit alone and its N-terminal half were able to bind to FEN1 and stimulate its endonuclease activity. A truncated FEN1 fragment lacking the C-terminal region that retained catalytic activity was not stimulated by MUS81. Michaelis-Menten kinetic analysis revealed that MUS81 increased the interaction between FEN1 and its substrates, resulting in increased turnover. We also showed that, after DNA damage in human cells, FEN1 co-localizes with MUS81. These findings indicate that the human proteins and yeast homologs act similarly, except that the human FEN1 does not stimulate the nuclease activities of MUS81-EME1 or MUS81-EME2. Thus, the mammalian MUS81 complexes and FEN1 collaborate to remove the various flap structures that arise during many DNA transactions, including Okazaki fragment processing.  相似文献   

18.
The progression of replication forks is often impeded by obstacles that cause them to stall or collapse, and appropriate responses to replication-associated DNA damage are important for genome integrity. Here we identified a new gene, mus7(+), that is involved in the repair of replication-associated DNA damage in the fission yeast Schizosaccharomyces pombe. The Deltamus7 mutant shows enhanced sensitivity to methyl methanesulfonate (MMS), camptothecin, and hydroxyurea, agents that cause replication fork stalling or collapse, but not to ultraviolet light or X-rays. Epistasis analysis of MMS sensitivity indicates that Mus7 functions in the same pathway as Mus81, a subunit of the Mus81-Eme1 structure-specific endonuclease, which has been implicated in the repair of the replication-associated DNA damage. In Deltamus7 and Deltamus81 cells, the repair of MMS-induced DNA double-strand breaks (DSBs) is severely impaired. Moreover, some cells with either mutation are hyper-elongated or enlarged, and most of these cells accumulate in late G2 phase. Spontaneous Rad22 (recombination mediator protein RAD52 homolog) foci increase in S phase to late G2 phase in Deltamus7 and Deltamus81 cells. These results suggest that replication-associated DSBs accumulate in these cells and that Rad22 foci form in the absence of Mus7 or Mus81. We also found that the rate of spontaneous conversion-type recombination is reduced in mitotic Deltamus7 cells, suggesting that Rhp51- (RAD51 homolog) dependent homologous recombination is disturbed in this mutant. From these data, we propose that Mus7 functions in the repair of replication-associated DSBs by promoting RAD51-dependent conversion-type recombination downstream of Rad22 and Mus81.  相似文献   

19.
In checkpoint-deficient cells, DNA double-strand breaks (DSBs) are produced during replication by the structure-specific endonuclease MUS81. The mechanism underlying MUS81-dependent cleavage, and the effect on chromosome integrity and viability of checkpoint deficient cells is only partly understood, especially in human cells. Here, we show that MUS81-induced DSBs are specifically triggered by CHK1 inhibition in a manner that is unrelated to the loss of RAD51, and does not involve formation of a RAD51 substrate. Indeed, CHK1 deficiency results in the formation of a RAD52-dependent structure that is cleaved by MUS81. Moreover, in CHK1-deficient cells depletion of RAD52, but not of MUS81, rescues chromosome instability observed after replication fork stalling. However, when RAD52 is down-regulated, recovery from replication stress requires MUS81, and loss of both these proteins results in massive cell death that can be suppressed by RAD51 depletion. Our findings reveal a novel RAD52/MUS81-dependent mechanism that promotes cell viability and genome integrity in checkpoint-deficient cells, and disclose the involvement of MUS81 to multiple processes after replication stress.  相似文献   

20.
During meiosis, recombination between homologous chromosomes generates crossover (CR) and noncrossover (NCR) products. CRs establish connections between homologs, whereas intermediates leading to NCRs have been proposed to participate in homologous pairing. How these events are differentiated and regulated remains to be determined. We have developed a strategy to detect, quantify, and map NCRs in parallel to CRs, at the Psmb9 meiotic recombination hot spot, in male and female mouse germ lines. Our results report direct molecular evidence for distinct CR and NCR pathways of DNA double-strand break (DSB) repair in mouse meiosis based on three observations: both CRs and NCRs require Spo11, NCR products have shorter conversion tracts than CRs, and only CRs require the MutL homolog Mlh1. We show that both products are formed from middle to late pachytene of meiotic prophase and provide evidence for an Mlh1-independent CR pathway, where mismatch repair does not require Mlh1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号