首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two pathways exist for cleavage of the carbon-phosphorus (C-P) bond of phosphonates, the C-P lyase and the phosphonatase pathways. It was previously demonstrated that Escherichia coli carries genes (named phn) only for the C-P lyase pathway and that Enterobacter aerogenes carries genes for both pathways (K.-S. Lee, W. W. Metcalf, and B. L. Wanner, J. Bacteriol. 174:2501-2510, 1992). In contrast, here it is shown that Salmonella typhimurium LT2 carries genes only for the phosphonatase pathway. Genes for the S. typhimurium phosphonatase pathway were cloned by complementation of E. coli delta phn mutants. Genes for these pathways were proven not to be homologous and to lie in different chromosomal regions. The S. typhimurium phn locus lies near 10 min; the E. coli phn locus lies near 93 min. The S. typhimurium phn gene cluster is about 7.2 kb in length and, on the basis of gene fusion analysis, appears to consist of two (or more) genes or operons that are divergently transcribed. Like that of the E. coli phn locus, the expression of the S. typhimurium phn locus is activated under conditions of Pi limitation and is subject to Pho regulon control. This was shown both by complementation of the appropriate E. coli mutants and by the construction of S. typhimurium mutants with lesions in the phoB and pst loci, which are required for activation and inhibition of Pho regulon gene expression, respectively. Complementation studies indicate that the S. typhimurium phn locus probably includes genes both for phosphonate transport and for catalysis of C-P bond cleavage.  相似文献   

2.
3.
Molecular genetics of carbon-phosphorus bond cleavage in bacteria   总被引:5,自引:0,他引:5  
Phosphonates (Pn) are a large class of organophosphorus molecules that have direct carbon-phosphorus (C - P) bonds in place of the carbon-oxygen-phosphorus ester bond. In bacteria two pathways exist for Pn breakdown for use as a P source: the phosphonatase and C - P lyase pathways. These pathways differ both in regard to their substrate specificity and their cleavage mechanism. The phosphonatase pathway acts on the natural Pn -aminoethylphosphonate(AEPn). In a two-step process it leads to cleavage of the C - P bond by a hydrolysis reaction requiring an adjacent carbonyl group. In contrast the C - P lyase pathway has a broad substrate specificity. It leads to cleavage of substituted Pn (such as AEPn) as well as unsubstituted Pn by a mechanism involving redox or radical chemistry. Due to its broad substrate specificity, the C - P lyase pathway is generally thought to be responsible for the breakdown of Pn herbicides (such as glyphosate) by bacteria. As a way to gain a more in-depth understanding of these Pn degradative pathways, their respective genes have been isolated and characterized. In the absence of a biochemical assay for the C - P lyase pathway such molecular approaches have been especially valuable. The roles of individual genes have been inferred from DNA sequence analysis and mutational effects. Genes for the C - P lyase pathway exist in a fourteen-gene operon that appears to encode both a binding protein-dependent Pn transporter and a C - P lyase. Genes for the phosphonatase pathway also exist in a gene cluster containing Pn uptake and degradative genes. A combination of biochemistry, molecular biology, and molecular genetics approaches has provided more detailed understanding of the mechanisms of C - P bond cleavage. Such basic information may provide a new handle for improvement of Pn degradation capabilities in bacteria, or in other cells in which the respective genes may be introduced and expressed.Abbreviations AEPn -aminoethylphosphonate - C carbon - kbp kilobase pair - kDa kilodalton - MPn methylphosphonate - P phosphorus - P i inorganic phosphate - Pn phosphonate - psi phosphate starvation inducible  相似文献   

4.
On the basis of mutational analysis, the genes for phosphonate uptake and degradation in Escherichia coli were shown to be organized in a 10.9-kb operon of 14 genes (named phnC to phnP) and induced by phosphate (Pi) starvation [Metcalf and Wanner (1993) J Bacteriol 175: 3430–3442]. The repression of phosphonate utilization by Pi has hindered both the biochemical characterization of the carbon-phosphorus (C-P) lyase activity and the development of improved methods for phosphonate biodegradation in biotechnology. We have cloned the genes phnG to phnP (associated with C-P lyase activity) with the lac promoter to provide expression of C-P lyase in the presence of Pi. A number of strains lacking portions of the phn operon have been constructed. In vivo complementation of the strains, in which phnC to phnP (including both Pn transport and catalysis genes) or phnH to phnP (including only catalysis genes) was deleted, with plasmids carrying various fragments of the phn operon revealed that the expression of phnC-phnP gene products is essential to restore growth on minimal medium with phosphonate as the sole phosphorus source, while phnG-phnM gene products are required for C-P lyase activity as assessed by in vivo methane production from methylphosphonic acid. The minimum size of the DNA required for the whole-cell C-P lyase activity has been determined to be a 5.8-kb fragment, encompassing the phnG to phnM genes. Therefore, there is no requirement for the phnCDE-encoded phosphonate transport system, suggesting that cleavage of the C-P bond may occur on the outer surface of the inner membrane of E. coli cells, releasing the carbon moiety into the periplasm. These data are in agreement with the observation that phosphonates cannot serve as the carbon source for E.␣coli growth. Received: 23 September 1997 / Received revision: 5 January 1998 / Accepted: 24 January 1998  相似文献   

5.
T Romeo  J Moore  J Smith 《Gene》1991,108(1):23-29
A simple and widely applicable method for cloning genes involved in glucan biosynthesis is described. An Escherichia coli genomic library was prepared in the low-copy plasmid, pLG339, and E. coli transformants from this library were screened by staining with iodine vapor. Colonies that stained darker than the control were isolated and characterized. The three classes of clones that were identified included: (i) plasmids encoding E. coli glycogen biosynthetic (glg) structural genes, (ii) clones that resulted in elevated glycogen levels, but did not encode glg structural genes or enhance the level of the first enzyme of the pathway, ADPglucose pyrophosphorylase (AGPP), and (iii) clones that enhanced the level of AGPP, but did not encode this enzyme. Two clones from the latter class also enhanced glgC'-'lacZ-encoded beta-galactosidase activity, and may encode factors that regulate the expression of glg structural genes. It should be possible to readily clone glycogen biosynthetic genes from other bacterial species via this method. The method could be made specific for a desired glg gene by using a recipient strain that is defective in the gene of interest.  相似文献   

6.
The heritable stability in Escherichia coli of the multicopy plasmid ColE1 and its natural relatives requires that the plasmids be maintained in the monomeric state. Plasmid multimers, that arise through recA-dependent homologous recombination, are normally converted to monomers by a site-specific recombination system that acts at a specific plasmid site (cer in ColE1). No plasmid functions that act at this site have been identified. In contrast, two unlinked E.coli genes that encode functions required for cer-mediated site-specific recombination have been identified. Here we describe the isolation and characterization of one such gene (xerA) and show it to be identical to the gene encoding the repressor of the arginine biosynthetic genes (argR). The argR protein binds to cer DNA both in vivo and in vitro in the presence of arginine. We believe this binding is required to generate a higher order protein-DNA complex within the recombinational synapse. The argR gene of Bacillus subtilis complements an E.coli argR deficiency for cer-mediated recombination despite the two proteins having only 27% amino acid identity.  相似文献   

7.
Several genes encoding enzymes capable of degrading plant cell wall components have been cloned from Erwinia carotovora subsp. carotovora EC14. Plasmids containing cloned EC14 DNA mediate the production of endo-pectate lyases, exo-pectate lyase, endo-polygalacturonase, and cellulase(s). Escherichia coli strains containing one of these plasmids or combinations of two plasmids were tested for their ability to macerate potato tuber slices. Only one E. coli strain, containing two plasmids that encode endo-pectate lyases, exo-pectate lyase, and endo-polygalacturonase, caused limited maceration. The pectolytic proteins associated with one of these plasmids, pDR1, have been described previously (D. P. Roberts, P. M. Berman, C. Allen, V. K. Stromberg, G. H. Lacy, and M. S. Mount, Can. J. Plant Pathol. 8:17-27, 1986) and include two secreted endo-pectate lyases. The second plasmid, pDR30, contains a 2.1-kilobase EC14 DNA insert that mediates the production of an exo-pectate lyase and an endo-polygalacturonase. These enzymes are similar in physicochemical properties to those produced by EC14. Our results suggest that the concerted activities of endo-pectate lyases with endo-polygalacturonase or exo-pectate lyase or both cause maceration.  相似文献   

8.
Y Tierny  C G Hounsa  J P Hornez 《Microbios》1999,97(386):39-53
The genes encoding pectin methylesterase (pme) and pectate lyase (pel) from Bacteroides thetaiotaomicron were previously cloned in Escherichia coli. In the absence of selective pressure the recombinant vectors harbouring a functional pel gene were rapidly lost. This instability was due to a toxic effect of the pel gene product when overproduced and was closely related (1) to a decrease of the growth rate, and (2) to the impossibility of transforming different strains of E. coli with the recombinant plasmids harbouring a functional pel gene. When the expression level of the pel gene was reduced and the tet gene partially deleted, the stability was greatly improved. The export of pectate lyase in the extracellular medium was significantly enhanced in the presence of glycine with a positive effect on plasmid stability for low concentrations. Furthermore, using a factorial design at two levels, the effects of tetracycline, ampicillin, glucose and magnesium on pBT4 stability were quantified.  相似文献   

9.
Regulation of capsular biosynthesis (rcs) genes, encoding the ability to induce the production of a colanic acid polysaccharide capsule, were transferred to Escherichia coli by conjugation with Klebsiella pneumoniae (aerogenes) of capsular serotype K36. Transfer was mediated by a 58.4-MDa conjugative plasmid of incompatibility group IncM, which carried a copy of Tn7 (specifying resistance to trimethoprim and streptomycin) together with determinants for several further resistances. This plasmid did not carry the rcs genes itself, but mediated the conjugative recA-dependent transfer of part of the Klebsiella chromosome to E. coli. Once resident in E. coli, the rcs gene(s) could not be mobilised to other strains of E. coli, and the mobilising plasmid could be cured from capsulate transconjugants without loss of the ability to produce colanic acid. All such cured transconjugants contained an insertion of Tn7 in the chromosome, suggesting that the transposon might be involved in mobilisation of the rcs genes from Klebsiella sp. to E. coli. These findings explain previous observations that the ability to manufacture capsular polysaccharide could be transferred by plasmids between Klebsiella sp. and E. coli.  相似文献   

10.
11.
T K Bera  S K Ghosh    J Das 《Nucleic acids research》1989,17(15):6241-6251
The mutL and mutS genes of Vibrio cholerae have been identified using interspecific complementation of Escherichia coli mutL and mutS mutants with plasmids containing the gene bank of V. cholerae. The recombinant plasmid pJT470, containing a 4.7 kb fragment of V. cholerae DNA codes for a protein of molecular weight 92,000. The product of this gene reduces the spontaneous mutation frequency of the E. coli mutS mutant. The plasmid, designated pJT250, containing a 2.5 kb DNA fragment of V. cholerae and coding for a protein of molecular weight 62,000, complements the mutL gene function of E. coli mutL mutants. These gene products are involved in the repair of mismatches in DNA. The complete nucleotide sequence of mutL gene of V. cholerae has been determined.  相似文献   

12.
Bacteria that use phosphonates as a phosphorus source must be able to break the stable carbon-phosphorus bond. In Escherichia coli phosphonates are broken down by a C-P lyase that has a broad substrate specificity. Evidence for a lyase is based on in vivo studies of product formation because it has been proven difficult to detect the activity in vitro. By using molecular genetic techniques, we have studied the genes for phosphonate uptake and degradation in E. coli, which are organized in an operon of 14 genes, named phnC to phnP. As expected for genes involved in P acquisition, the phnC-phnP operon is a member of the PHO regulon and is induced many hundred-fold during phosphate limitation. Three gene products (PhnC, PhnD and PhnE) comprise a binding protein-dependent phosphonate transporter, which also transports phosphate, phosphite, and certain phosphate esters such as phosphoserine; two gene products (PhnF and PhnO) may have a role in gene regulation; and nine gene products (PhnG, PhnH, PhnI, PhnJ, PhnK, PhnL, PhnM, PhnN, and PhnP) probably comprise a membrane-associated C-P lyase enzyme complex. Although E. coli can degrade many different phosphonates, the ability to use certain phosphonates appears to be limited by the specificity of the PhnCDE transporter and not by the specificity of the C-P lyase.  相似文献   

13.
Abstract Regulation of capsular biosynthesis ( rcs ) genes, encoding the ability to induce the production of a colanic acid polysaccharide capsule, were transferred to Escherichia coli by conjugation with Klebsiella pneumoniae (aerogenes) of capsular serotype K36. Transfer was mediated by a 58.4-MDa conjugative plasmid of incompatibility group IncM, which carried a copy of Tn7 (specifying resistance to trimethoprim and streptomycin) together with determinants for several further resistances. This plasmid did not carry the rcs genes itself, but mediated the conjugative recA -dependent transfer of part of the Klebsiella chromosome to E. coli . Once resident in E. coli , the rcs gene(s) could not be mobilised to other strains of E. coli , and the mobilising plasmid could be cured from capsulate transconjugants without loss of the ability to produce colanic acid. All such cured transconjugants contained an insertion of Tn7 in the chromosome, suggesting that the transposon might be involved in mobilisation of the rcs genes from Klebsiella sp. to E. coli . These findings explain previous observations that the ability to manufacture capsular polysaccharide could be transferred by plasmids between Klebsiella sp. and E. coli .  相似文献   

14.
15.
16.
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.  相似文献   

17.
ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.  相似文献   

18.
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.  相似文献   

19.
A cosmid gene library of the genome of Lactococcus lactis subsp. lactis 712 has been constructed in the broad host range plasmid pLAFR1 in Escherichia coli LE392. Three lactococcal genes from the bank were identified by heterologous complementation of specific mutations in strains of E. coli. A cosmid clone encoding a putative lactose transport gene was identified by complementing an E. coli lacY mutant. The complemented clone supported the uptake of 14C lactose in transport assays. The DNA fragment responsible was subcloned and localised to a 1.28 kb fragment of the lactococcal chromosome.  相似文献   

20.
We report here the molecular isolation of a DNA fragment which encodes Tag-like activity from the Gram-negative bacterium Serratia marcescens. A recombinant plasmid encoding Tag-like activity was isolated from a S. marcescens plasmid gene library by complementation of an Escherichia coli tag mutant, which is deficient in 3-methyladenine DNA glycosylase I. The clone complements E. coli tag, recA, alkA, but not alkB, mutants for resistance to the DNA-damaging agent methyl methanesulphonate (MMS). The coding region of the Tag activity, initially isolated on a 6.5kb BamHI fragment, was defined to a 1.8kb BglII-SmaI fragment. Labelling of plasmid-encoded proteins using maxicells revealed that the 1.8kb fragment encodes two proteins of molecular weights 42,000 and 16,000. Data presented here suggest that the cloned fragment encodes a DNA repair protein(s) that has similar activity to the 3-methyladenine DNA glycosylase I of E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号