首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Serret  M.D.  Trillas  M.I.  Araus  J.L. 《Photosynthetica》2001,39(1):67-73
We tested the effect of growing conditions during micropropagation on the fast kinetics of chlorophyll (Chl) fluorescence of Gardenia jasminoides Ellis plantlets during a 4-week acclimation to ex vitro. We studied whether photoautotrophic growing in vitro produced plantlets with less photoinhibition impairment during acclimation. Of the growing conditions stimulating photoautotrophy in vitro, only loose tube caps had a positive effect, whereas low sucrose or sucrose-free content in the medium and high PPFD showed a negative effect. Thus, plantlets cultured with 3 % (m/v) of sucrose were subsequently less photoinhibited throughout acclimation than those cultured with low sucrose (0.5 %) or sucrose-free media. Moreover, at the end of acclimation the former plantlets showed Fv/Fm and Fv/F0 ratios typical of unstressed ex vitro plants as well as a higher Chl content and ratio of Chls to carotenoids. Plantlets cultured at a photosynthetic photon fluence density (PPFD) of 50 µmol m–2 s–1 also showed a better performance at the end of acclimation than those cultured at a higher (110 µmol m–2 s–1) PPFD. Thus except in the case of loose-tube closure, gardenia plantlets cultured in vitro under conventional sucrose concentration and PPFD are the least photoinhibited during acclimation. Nevertheless, significant interactions between the in vitro growing factors were observed at the end of acclimation.  相似文献   

2.
Photosynthetic rates of green leaves (GL) and green flower petals (GFP) of the CAM plant Dendrobium cv. Burana Jade and their sensitivities to different growth irradiances were studied in shade-grown plants over a period of 4 weeks. Maximal photosynthetic O2 evolution rates and CAM acidities [dawn/dusk fluctuations in titratable acidity] were higher in leaves exposed to intermediate sunlight [a maximal photosynthetic photon flux density (PPFD) of 500–600 μmol m−2 s−1] than in leaves grown under full sunlight (a maximal PPFD of 1 000–1 200 μmol m−2 s−1) and shade (a maximal PPFD of 200–250 μmol m−2 s−1). However, these two parameters of GFP were highest in plants grown under the shade and lowest in full sun-grown plants. Both GL and GFP of plants exposed to full sunlight had lower predawn Fv/Fm [dark adapted ratio of variable to maximal fluorescence (the maximal photosystem 2 yield without actinic irradiation)] than those of shade-grown plants. When exposed to intermediate sunlight, however, there were no significant changes in predawn Fv/Fm in GL whereas a significant decrease in predawn Fv/Fm was found in GFP of the same plant. GFP exposed to full sunlight exhibited a greater decrease in predawn Fv/Fm compared to those exposed to intermediate sunlight. The patterns of changes in total chlorophyll (Chl) content of GL and GFP were similar to those of Fv/Fm. Although midday Fv/Fm fluctuated with prevailing irradiance, changes of midday Fv/Fm after exposure to different growth irradiances were similar to those of predawn Fv/Fm in both GL and GFP. The decreases in predawn and midday Fv/Fm were much more pronounced in GFP than in GL under full sunlight, indicating greater sensitivity in GFP to high irradiance (HI). In the laboratory, electron transport rate and photochemical and non-photochemical quenching of Chl fluorescence were also determined under different irradiances. All results indicated that GFP are more susceptible to HI than GL. Although the GFP of Dendrobium cv. Burana Jade require a lower amount of radiant energy for photosynthesis and this plant is usually grown in the shade, is not necessarily a shade plant.  相似文献   

3.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

4.
This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 μmol m−2 s−1. In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 μmol m−2 s−1). The increase in growth irradiance from 700 to 1500 μmol m−2 s−1 did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (Fv/Fm) evidenced photoinhibition at 700 and especially at 1500 μmol m−2 s−1. The relation between photosynthetic electron flow rate and photosyntetic O2 evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 μmol m−2 s−1). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The ability of spring barley (Hordeum vulgare cv. Akcent) to adjust the composition and function of the photosynthetic apparatus to growth irradiances of 25–1200 μmol m−2 s−1 was studied by gas exchange and chlorophyll a fluorescence measurements and high-performance liquid chromatography. The increased growth irradiance stimulated light- and CO2-saturated rates of CO2 assimilation expressed on a leaf area basis up to 730 μmol m−2 s−1 (HL730), whereas at an irradiance of 1200 μmol m−2 s−1 (EHL1200) both rates decreased significantly. Further, the acclimation to EHL1200 was associated with an extremely high chlorophyll a/b ratio (3.97), a more than doubled xanthophyll cycle pool (VAZ) and a six-fold higher de-epoxidation state of the xanthophyll cycle pigments as compared to barley grown under 25 μmol m−2 s−1 (LL25). EHL1200 plants also exhibited a long-term inhibition of Photosystem II (PS II) photochemical efficiency (F v/F m). Photosynthetic capacity, chlorophyll a/b and VAZ revealed a linear trend of dependence on PS II excitation pressure in a certain range of growth irradiances (100–730 μmol m−2 s−1). The deviation from linearity of these relationships for EHL1200 barley is discussed. In addition, the role of increased VAZ and/or accumulation of zeaxanthin and antheraxanthin in acclimation of barley to high irradiance is studied with respect to regulation of non-radiative dissipation and/or photochemical efficiency within PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
African violet (Saintpaulia ionantha H. Wendl) is one of the most easily and commonly tissue-cultured ornamental plants. Despite this, there are limited reports on photosynthetic capacity and its impact on the plant quality during acclimatization. Various growth, photosynthetic and biochemical parameters and activities of antioxidant enzymes and dehydrins of micropropagated plants were assessed under three light intensities (35, 70, and 100 µmol m?2 s?1 photosynthetic photon flux density – PPFD). Fresh and dry plant biomass, plant height, and leaf area were optimal with high irradiance (70–100 µmol m?2 s?1 PPFD). Chlorophyll and carotenoid contents and net photosynthesis were optimal in plants grown under 70 µmol m?2 s?1 PPFD. Stomatal resistance, malondialdehyde content, and Fv/Fm values were highest at low light irradiance (35 µmol m?2 s?1 PPFD). The activities of three antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase, increased as light irradiance increased, signaling that high light irradiance was an abiotic stress. The accumulation of 55, 33, and 25 kDa dehydrins was observed with all light treatments although the expression levels were highest at 35 µmol m?2 s?1 PPFD. Irradiance at 70 µmol m?2 s?1 PPFD was suitable for the acclimatization of African violet plants. Both low and high irradiance levels (35 and 100 µmol m?2 s?1 PPFD) induced the accumulation of antioxidants and dehydrins in plants which reveals enhanced stress levels and measures to counter it.  相似文献   

7.
Six months old in vitro-grown Anoectochilus formosanus plantlets were transferred to ex-vitro acclimation under low irradiance, LI [60 μmol(photon) m−2 s−1], intermediate irradiance, II [180 μmol(photon) m−2 s−1], and high irradiance, HI [300 μmol(photon) m−2 s−1] for 30 d. Imposition of II led to a significant increase of chlorophyll (Chl) b content, rates of net photosynthesis (P N) and transpiration (E), stomatal conductance (g s), electron transfer rate (ETR), quantum yield of electron transport from water through photosystem 2 (ΦPS2), and activity of ribulose-1,5-bisphosphate carboxylase/ oxygenase (RuBPCO, EC 4.1.1.39). This indicates that Anoectochilus was better acclimated at II compared to LI treatment. On the other hand, HI acclimation led to a significant reduction of Chl a and b, P N, E, g s, photochemical quenching, dark-adapted quantum efficiency of open PS2 centres (Fv/Fm), probability of an absorbed photon reaching an open PS2 reaction centre (Fv′/Fm′), ETR, ΦPS2, and energy efficiency of CO2 fixation (ΦCO2PS2). This indicates that HI treatment considerably exceeded the photo-protective capacity and Anoectochilus suffered HI induced damage to the photosynthetic apparatus. Imposition of HI significantly increased the contents of antheraxanthin and zeaxanthin (ZEA), non-photochemical quenching, and conversion of violaxanthin to ZEA. Thus Anoectochilus modifies its system to dissipate excess excitation energy and to protect the photosynthetic machinery.  相似文献   

8.
The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combination for growth of H. pluvialis, but there has been a great deal of disagreement between laboratories. “Ideal” levels of temperature and irradiance have been reported to range from 14 to 28°C and 30 to 200 μmol photons m−2 s−1. The objective of the present study was to simultaneously explore temperature and irradiance effects for a single strain of H. pluvialis (UTEX 2505) across an experimental region that encompassed the reported “optimal” combinations of these factors for multiple strains. To this end, a two-dimensional experimental design based on response surface methodology (RSM) was created. Maximum growth rates for UTEX 2505 were achieved at 27°C and 260 μmol photons m−2 s−1, while maximum quantum yield for stable charge separation at PSII (Fv/Fm) was achieved at 27°C and 80 μmol photons m−2 s−1. Maximum pigment concentrations correlated closely with maximum Fv/Fm. Numeric optimization of growth rate and Fv/Fm produced an optimal combination of 27°C and 250 μmol photons m−2 s−1. Polynomial models of the various response surfaces were validated with multiple points and were found to be very useful for predicting several H. pluvialis UTEX 2505 responses across the entire two-dimensional experimental design space.  相似文献   

9.
To investigate whether brassinosteroids (BRs) could be used to alleviate chill-induced inhibition of photosynthesis in cucumber (Cucumis sativus L) during chilling and subsequent recovery, the effects of exogenously applied 24-epibrassinolide (EBR) on gas exchange, chlorophyll fluorescence parameters, and antioxidant enzyme activity were studied. Cucumber plants were exposed to chilling under low light (12/8°C and 100 μmol m−2 s−1 PPFD) for 3 days and then recovered under normal temperature and high irradiance (28/18°C and 600 μmol m−2 s−1 PPFD) for 6 days. Chilling significantly decreased the net photosynthetic rate (P N) and stomatal conductance (g s), and increased rate of O2 ·− formation and H2O2 and malondialdehyde (MDA) content in cucumber leaves, but did not influence the optimal quantum yield of PSII (Fv/Fm). Chilling also decreased the effective quantum yield of PSII photochemistry (ΦPSII) and photochemical quenching (qP), but induced an increase in nonphotochemical quenching (NPQ), and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). High irradiance (600 μmol m−2 s−1) further aggravated the decrease in P N, g s, ΦPSII and qP, and enhanced the increase in reactive oxygen species (ROS) generation and accumulation in the first day of recovery after chilling. However, high irradiance induced a sharp decrease in Fv/Fm and NPQ, as well as the activities of SOD and APX on the first day of recovery. EBR pretreatment significantly alleviated chill-induced inhibition of photosynthesis during chilling stress and subsequent recovery period, which was mainly due to significant increases in g s, ΦPSII, qP and NPQ. EBR pretreatment also reduced ROS generation and accumulation, and increased the activities of SOD and APX during chilling and subsequent recovery. Those results suggest that EBR pretreatment alleviates the chill reduction in photosynthesis and accelerated the recovery rate mainly by increasing of the stomatal conductance, the efficiency of utilization and dissipation of leaf absorbed light, and the activity of the ROS scavenging system during chilling and subsequent recovery period.  相似文献   

10.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

11.
Summary Caustis blakei is an attractive cut foliage plant harvested from the wild in Australia and marketed under the name of koala fern. Previous attempts to propagate large numbers of this plant have been unsuccessful. The effect of four light irradiances on organogenesis from compact and friable callus of C. blakei was studied for 21 wk. Both callus types produced numerous primordial shoots but many failed to develop into green plantlets. However, significantly more primordial shoots and green plantlets developed on the friable callus than on the compact callus, and significantly more green plantlets were regenerated under the higher photon irradiances of 200 and 300 μmol m−2s−1 than under the lower irradiances of 100 and 150 μmol m−2s−1. The compact callus produced its maximum number of green plantlets early in the experiment (after 9 wk), while the friable callus continued to produce primordial shoots and green plantelets throughout the period of the experiment, and reached its maximum production of green plantlets at 21 wk under the irradiance of 300 μmol m−2s−1. Organogenesis from friable callus under high irradiance (300 μmol m−2s−1) offers an efficient propagation method for C. blakei.  相似文献   

12.
This paper reports on the fast fluorescence responses of Gardenia jasminoides Ellis plantlets, at two successive stages (shoot multiplication and root induction) of culture in vitro. We test whether plantlets in vitro suffer photoinhibition during culture and whether the degree of photoautotrophy of these mixotrophic plantlets has any effect on the extent of photoinhibitory impairment. In this regard the effects of different sucrose levels in the medium and PPFD during growth on the development of photoautotrophy and the extent of photoinhibition were evaluated. Plantlets were grown under low, intermediate, and high (50, 100, and 300 mol m-2 s-1) PPFD, and at 3 different sucrose concentrations (0.5, 1.5, and 3.0%, w/v) in the medium, during shoot multiplication. During root induction the same growth conditions were assayed except for the high PPFD. The development of photoautotrophy was assessed via the difference between the stable carbon isotope composition of sucrose used as heterotrophic carbon source and that of leaflets grown in vitro. Plantlets from root induction showed more developed photoautotrophy than those from shoot multiplication. For both stages the low-sucrose medium stimulated the photoautotrophy of plantlets in vitro. In addition, intermediate PPFD induced photoautotrophy during shoot multiplication. For plantlets of both culture stages at the lowest PPFD no photoinhibition occurred irrespective of the sucrose concentration in media. However, during the shoot multiplication stage chlorophyll fluorescence measurements showed a decrease in F v /F m and in t 1/2 as growing PPFD increased, indicating photoinhibitory damage. The decline of F v /F m was caused mostly by an increase in F o , indicating the inactivation of PSII reaction centers. However plantlets growing under low sucrose showed reduced susceptibility to photoinhibition. During root induction, only plantlets cultured with high sucrose showed a decrease in F v /F m as PPFD increased, although t 1/2 remained unchanged. In this case, the decline of F v /F m was mostly due to a decrease in F m , which indicates increased photoprotection rather than occurrence of photodamage. Therefore, growth in low-sucrose media had a protective effect on the resistance of PSII to light stress. In addition, plantlets were more resistant to photoinhibition during root induction than during shoot multiplication. Results suggest that increased photoautotrophy of plantlets reduces susceptibility to photoinhibition during gardenia culture in vitro.Abbreviations AP apparent photosynthesis - Chl total chlorophyll content - Chl a/b chlorophyll a-to-b ratio - Chl/Car total chlorophyll-to-carotenoids ratio - 13C ratio of 13C/12C relative to PeeDee belemnite standard - F m maximum chlorophyll fluorescence - F o fluorescence emission when all reaction centres are open and the photochemical quenching is minimal - F v variable chlorophyll fluorescence (F m -F o ) - F v /F m the ratio of variable to maximum chlorophyll fluorescence, indicator photochemical efficiency of PSII - MS medium Murashige and Skoog (1962) medium - PPFD photosynthetic photon flux density - Rd dark respiration, t 1/2 the half-time of the increase from F o to F m - IAA indole butyric acid  相似文献   

13.
In order to elucidate the effects of chilling-stress at night on photosystem 2 (PS2) efficiency under dim irradiance (DI), mango leaves were chilled to varied extent (8–3 °C) and for varied duration (0–12 h) in growth cabinets in the dark, and then exposed to DI (20 μmol m−2 s−1 PPFD) at each chilling-temperature for 1 h. Chilling in the dark had little effect on Fv/Fm of mango leaves. But both the extent and duration of chilling pre-treatments significantly affected Fv’/Fm’ when leaves were exposed to DI. This down-regulation of PS2 efficiency was closely related to xanthophyll de-epoxidation, assessed as photochemical reflectance index (PRI) and calculated from leaf spectral reflectance [(R531 − R570)/(R531 + R570)], and non-photochemical quenching (NPQ). The down-regulation of PS2 is a defence mechanism initiated at predawn in winter to alleviate the damage of PS2 by the sudden and strong irradiation at sunrise. Mango leaves, transferred suddenly from warm and dark room to DI and chilling showed a slight down-regulation of PS2 efficiency, in spite of an increased xanthophyll de-epoxidation. This might have been due to the unavailability of some cofactors required for NPQ.  相似文献   

14.
Kurasová  I.  Kalina  J.  Urban  O.  Štroch  M.  Špunda  V. 《Photosynthetica》2003,41(4):513-523
The short-term acclimation (10-d) of Norway spruce [Picea abies (L.) Karst] to elevated CO2 concentration (EC) in combination with low irradiance (100 mol m–2 s–1) resulted in stimulation of CO2 assimilation (by 61 %), increased total chlorophyll (Chl) content (by 17 %), significantly higher photosystem 2 (PS2) photochemical efficiency (Fv/Fm; by 4 %), and reduced demand on non-radiative dissipation of absorbed excitation energy corresponding with enhanced capacity of photon utilisation within PS2. On the other hand, at high cultivation irradiance (1 200 mol m–2 s–1) both Norway spruce and spring barley (Hordeum vulgare L. cv. Akcent) responded to EC by reduced photosynthetic capacity and prolonged inhibition of Fv/Fm accompanied with enhanced non-radiative dissipation of absorbed photon energy. Norway spruce needles revealed the expressive retention of zeaxanthin and antheraxanthin (Z+A) in darkness and higher violaxanthin (V) convertibility (yielding even 95 %) under all cultivation regimes in comparison with barley plants. In addition, the non-photochemical quenching of minimum Chl a fluorescence (SV0), expressing the extent of non-radiative dissipation of absorbed photon energy within light-harvesting complexes (LHCs), linearly correlated with V conversion to Z+A very well in spruce, but not in barley plants. Finally, a key role of the Z+A-mediated non-radiative dissipation within LHCs in acclimation of spruce photosynthetic apparatus to high irradiance alone and in combination with EC was documented by extremely high SV0 values, fast induction of non-radiative dissipation of absorbed photon energy, and its stability in darkness.  相似文献   

15.
To investigate damaging mechanisms of chilling and salt stress to peanut (Arachis hypogaea L.) leaves, LuHua 14 was used in the present work upon exposure to chilling temperature (4°C) accompanied by high irradiance (1,200 μmol m−2 s−1) (CH), salt stress accompanied by high irradiance (1,200 μmol m−2 s−1) (SH), and high-irradiance stress (1,200 μmol m−2 s−1) at room temperature (25°C) (NH), respectively. Additionally, plants under low irradiance (100 μmol m−2 s−1) at room temperature (25°C) were used as control plants (CK). Relative to CK and NH treatments, both the maximal photochemical efficiency of PSII (Fv/Fm) and the absorbance at 820 nm decreased greatly in peanut leaves under CH and SH stress, which indicated that severe photoinhibition occurred in peanut leaves under such conditions. Initial fluorescence (Fo), 1 − qP and nonphotochemical quenching (NPQ) in peanut leaves significantly increased under CH- and SH stress. Additionally, the activity of superoxide dismutase (SOD), one of the key enzymes of water-water cycle, decreased greatly, the accumulation of malondialdehyde (MDA) and membrane permeability increased. These results suggested that damages to peanut photosystems might be related to the accumulation of reactive oxygen species (ROS) induced by excess energy, and the water-water cycle could not dissipate energy efficiently under the stress of CH and SH, which caused the accumulation of ROS greatly. CH and SH had similar damaging effects on peanut photosystems, except that CH has more severe effects. All the results showed that CH- and SH stress has similar damaging site and mechanisms in peanut leaves.  相似文献   

16.
Kurasová  I.  Kalina  J.  Štroch  M.  Urban  O.  Špunda  V. 《Photosynthetica》2003,41(2):209-219
The response of barley (Hordeum vulgare L. cv. Akcent) to various photosynthetic photon flux densities (PPFDs) and elevated [CO2] [700 μmol (CO2) mol−1; EC] was studied by gas exchange, chlorophyll (Chl) a fluorescence, and pigment analysis. In comparison with barley grown under ambient [CO2] [350 μmol (CO2) mol−1; AC] the EC acclimation resulted in a decrease in photosynthetic capacity, reduced stomatal conductance, and decreased total Chl content. The extent of acclimation depression of photosynthesis, the most pronounced for the plants grown at 730 μmol m−2 s−1 (PPFD730), may be related to the degree of sink-limitation. The increased non-radiative dissipation of absorbed photon energy for all EC plants corresponded to the higher de-epoxidation state of xanthophylls only for PPFD730 barley. Further, a pronounced decrease in photosystem 2 (PS2) photochemical efficiency (given as FV/FM) for EC plants grown at 730 and 1 200 μmol m−2 s−1 in comparison with AC barley was related to the reduced epoxidation of antheraxanthin and zeaxanthin back to violaxanthin in darkness. Thus the EC conditions sensitise the photosynthetic apparatus of high-irradiance acclimated barley plants (particularly PPFD730) to the photoinactivation of PS2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Seeds of Suaeda salsa were cultured in dark for 3 d and betacyanin accumulation in seedlings was promoted significantly. Then the seedlings with accumulated betacyanin (C+B) were transferred to 14/10 h light/dark and used for chilling treatment 15 d later. Photosystem 2 (PS2) photochemistry, D1 protein content, and xanthophyll cycle during the chilling-induced photoinhibition (exposed to 5 °C at a moderate photon flux density of 500 μmol m−2 s−1 for 3 h) and the subsequent restoration were compared between the C+B seedlings and the control (C) ones. The maximal efficiency of PS2 photochemistry (Fv/Fm), the efficiency of excitation energy capture by open PS2 centres (Fv′/Fm′), and the yield of PS2 electron transport (ΦPS2) of the C+B and C leaves both decreased during photoinhibition. However, smaller decreases in Fv/Fm, Fv′/Fm′, and ΦPS2 were observed in the C+B leaves than in C ones. At the same time, the deepoxidation state of xanthophyll cycle, indicated by (A+Z)/(V+A+Z) ratio, increased rapidly but the D1 protein content decreased considerably during the photoinhibition. The increase in rate of (A+Z)/(V+A+Z) was higher but the D1 protein turnover was slower in C+B than C leaves. After photoinhibition treatment, the plants were transferred to a dim irradiation (10 μmol m−2 s−1) at 25 °C for restoration. During restoration, the chlorophyll (Chl) fluorescence parameters, D1 protein content, and xanthophyll cycle components relaxed gradually, but the rate and level of restoration in the C+B leaves was greater than those in the C leaves. The addition of betacyanins to the thylakoid solution in vitro resulted in similar changes of Fv/Fm, D1 protein content, and (A+Z)/(V+A+Z) ratio during the chilling process. Therefore, betacyanin accumulation in S. salsa seedlings may result in higher resistance to photoinhibition, larger slowing down of D1 protein turnover, and enhancement of non-radiative energy dissipation associated with xanthophyll cycle, as well as in greater restoration after photoinhibition than in the control when subjected to chilling at moderate irradiance.  相似文献   

18.
Two experiments were conducted in a factorial combination of three Zn levels (0, 10 and 40 mg Zn kg-1 soil) and two P levels (0 and 200 mg P kg-1 soil). Experiment 1 was carried out during winter in a heated glasshouse, and experiment 2 during summer under a rain shelter. Plants of dwarf bean (Phaseolus vulgaris L., cv. Borlotto nano) were grown in pots filled with sandy soil. In both experiments, leaf Zn concentration was reduced by the addition of P to plants grown at low Zn supply. However, leaf Zn concentration lower than the critical level was observed only during experiment 2, and the main effects of low Zn were reductions of internode length, light use efficiency and maximum photosynthetic rate. In plants with leaf Zn concentration lower than the critical level, saturating irradiance levels fell from 1000 μmol m-2 s-1 PPFD to 300–400 μmol m-2 s-1 PPFD. Reduction of net photosynthesis was observed from the beginning of flowering and led to decreased seed production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Light dependency of the photosynthetic recovery of Nostoc flagelliforme   总被引:7,自引:0,他引:7  
PS II photochemical efficiency (Fv/Fm) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. Fv/Fm was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 μmol photon m2 s-1) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20–45, 200–350, and 750–800 mol m-2s-1) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 mol m-2s-1) and shaded lower portions (maximum PPFD of 140 mol m-2s-1) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 mol m-2s-1. Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.Abbreviations ANOVA analysis of variance - CAM Crassulacean acid metabolism - DW dry weight - PPFD photosynthetic photon flux density - SNK Student-Newman-Keuls (to whom all correspondence should be sent-present address and reprint requests);  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号