首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Aluminium has been measured in the hands of 18 referent subjects and six aluminium welders using the technique of in vivo neutron activation analysis. The minimal detection limit (MDL) in the human subjects was 28.0 μgAl/gCa, whereas it was 19.5 μgAl/gCa in calibration standards. On average the aluminium exposed subjects had higher levels of aluminium in their hands than did the referent subjects. However, this difference only just achieved significance at the 5% level and should be treated with caution, since the study had not been deliberately designed to assess this difference. Following the preliminary human study, improvements were made to the measurement system with respect to the gamma-ray detector array and to the timing sequence of irradiation-transfer-counting. These improvements were tested on the calibration standards, lowering the MDL from 19.5 μgAl/gCa to 8.32 μgAl/gCa. A similar improvement in human measurements would result in an in vivo MDL of 12.0 μgAl/gCa.  相似文献   

2.

Background

To date, no biomarkers with reasonable sensitivity and specificity for the early detection of malignant mesothelioma have been described. The use of microRNAs (miRNAs) as minimally-invasive biomarkers has opened new opportunities for the diagnosis of cancer, primarily because they exhibit tumor-specific expression profiles and have been commonly observed in blood of both cancer patients and healthy controls. The aim of this pilot study was to identify miRNAs in the cellular fraction of human peripheral blood as potential novel biomarkers for the detection of malignant mesothelioma.

Methodology/Principal Findings

Using oligonucleotide microarrays for biomarker identification the miRNA levels in the cellular fraction of human peripheral blood of mesothelioma patients and asbestos-exposed controls were analyzed. Using a threefold expression change in combination with a significance level of p<0.05, miR-103 was identified as a potential biomarker for malignant mesothelioma. Quantitative real-time PCR (qRT-PCR) was used for validation of miR-103 in 23 malignant mesothelioma patients, 17 asbestos-exposed controls, and 25 controls from the general population. For discrimination of mesothelioma patients from asbestos-exposed controls a sensitivity of 83% and a specificity of 71% were calculated, and for discrimination of mesothelioma patients from the general population a sensitivity of 78% and a specificity of 76%.

Conclusions/Significance

The results of this pilot study show that miR-103 is characterized by a promising sensitivity and specificity and might be a potential minimally-invasive biomarker for the diagnosis of mesothelioma. In addition, our results support the concept of using the cellular fraction of human blood for biomarker discovery. However, for early detection of malignant mesothelioma the feasibility of miR-103 alone or in combination with other biomarkers needs to be analyzed in a prospective study.  相似文献   

3.
Tibia lead is measured in vivo using X-ray fluorescence. A109Cd source is used to excite Pb K X-rays, and this signals is normalized to that from Rayleigh scattering to remove geometrical variations. The lower limit of detection is 10 μg/g for a mean absorbed dose, to the exposed section of the leg, of 100 μGy. Tibia lead correlated positively with age in normal volunteers (r=0.615,p=0.004) and with duration of exposure in occupationally exposed subjects (r=0.847,p=0.0001). When the X-ray fluorescence technique was applied to autopsy specimens previously analyzed by atomic absorption spectrometry there was excellent agreement between measurement techniques. Cadmium is measured in vivo by neutron activation analysis. The detection limit in liver is 6.5 μg/g for a local skin dose equivalent of 0.5 mSv and in kidney is 6.4 mg for a dose equivalent of 0.9 mSv to the skin. Detailed analysis of the γ-ray spectrum will produce only slight improvements in detection limit. Uncertainties in organ position during measurement, even after ultrasonic localization, are likely to produce uncertainties of 20–25% in cadmium measurement. Autopsy samples were measured, using a fast neutron activation method, from people previously measured in vivo. The results are broadly consistent, but show differences greater than those accounted for by counting statistics.  相似文献   

4.
Neutron activation is an accurate analytic method in which trace quantities of isotopes of interest in a sample are activated and the emitted radiation is measured with high-resolution detection equipment. This study demonstrates the application of neutron activation for the measurement of myocardial perfusion using stable isotopically labeled microspheres. Stable labeled and standard radiolabeled microspheres (15 microm) were coinjected in an in vivo rabbit model of myocardial ischemia and reperfusion. Radiolabeled microspheres were detected with a standard gamma-well counter, and stable labeled microspheres were detected with a high-resolution Ge detection after neutron activation of the myocardial and reference blood samples. Regional myocardial blood flow was calculated from the deposition of radiolabeled and stable labeled microspheres. Both sets of microspheres gave similar measurements of regional myocardial blood flow over a wide range of flow with a high linear correlation (r = 0.95-0.99). Neutron activation is capable of detecting a single microsphere in an intact myocardial sample while providing simultaneous quantitative measurements of multiple isotope labels. This high sensitivity and capability for measuring perfusion in intact tissue are advantages over other techniques, such as optical detection of microspheres. Neutron activation also can provide an effective method for reducing the production of low-level radioactive waste generated from biomedical research. Further applications of neutron activation offer the potential for measuring other stable labeled compounds, such as fatty acids and growth factors, in conjunction with microsphere measured flow, providing the capability for simultaneous measurement of regional metabolism and perfusion.  相似文献   

5.
In the past 20 yr, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the technique more widely available to both medical practitioners and medical investigtors. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modeling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement.  相似文献   

6.
In the process of developing a new dosimetry system for atomic bomb survivors in Hiroshima and Nagasaki (DS02), an intercomparison study between (152)Eu and (36)Cl measurements was proposed, to reconcile the discrepancy previously observed in the Hiroshima data between measurements and calculations of thermal neutron activation products. Nine granite samples, exposed to the atomic-bomb radiation in Hiroshima within 1,200 m of the hypocenter, as well as mixed standard solutions containing known amounts of europium and chlorine that were neutron-activated by a (252)Cf source, were used for the intercomparison. Gamma-ray spectrometry for (152)Eu was carried out with ultra low-background Ge detectors at the Ogoya Underground Laboratory, Kanazawa University, while three laboratories participated in the (36)Cl measurement using accelerator mass spectrometry (AMS): The Technical University of Munich, Germany, the Lawrence Livermore National Laboratory, USA and the University of Tsukuba, Japan. Measured values for the mixed standard solutions showed good agreement among the participant laboratories. They also agreed well with activation calculations, using the neutron fluences monitored during the (252)Cf irradiation, and the corresponding activation cross-sections taken from the JENDL-3.3 library. The measured-to-calculated ratios obtained were 1.02 for (152)Eu and 0.91-1.02 for (36)Cl, respectively. Similarly, the results of the granite intercomparison indicated good agreement with the DS02 calculation for these samples. An average measured-to-calculated ratio of 0.98 was obtained for all granite intercomparison measurements. The so-called neutron discrepancy that was previously observed and that which included increasing measured-to-calculated ratios for thermal neutron activation products for increasing distances beyond 1,000 m from the hypocenter was not seen in the results of the intercomparison study. The previously claimed discrepancy could be explained by insufficient understanding of the measured data.  相似文献   

7.
At the accelerator mass spectrometry (AMS) laboratory in Lund, a facility for (26)Al analysis is under development. The sensitivity is expected to be several orders of magnitude higher than with standard mass spectrometry. The planned biomedical program includes studies of aluminium uptake, distribution and retention in man. The initial work has been concentrated on the construction and testing of a new dedicated injector for the accelerator and on the preparation of biological samples for aluminium analysis. The current quality of the facility is presented and the first experimental results reported.  相似文献   

8.
The ventral surface of the tongue of male Fisher 344 rats was used to evaluate the response of oral mucosa to boron neutron capture irradiation. Three hours after i.p. injection of 700 mg/kg of the boron delivery agent p-boronophenylalanine (BPA), the boron concentrations in blood and tongue mucosal epithelium were approximately 21 and 23 microgram (10)B/g, respectively. The doses required to produce a 50% incidence of ulceration with X rays, the Brookhaven Medical Research Reactor thermal neutron beam alone, or the thermal neutron beam in the presence of BPA were 13.4 +/- 0.2, 4. 2 +/- 0.1, and 3.0 +/- 0.1 Gy, respectively. Ulceration of the tongue was evident by 6 to 7 days after irradiation, irrespective of the irradiation modality; healing was related to dose and was relatively rapid (相似文献   

9.
In response to DNA damage such as from UV irradiation, mammalian Y-family translesion synthesis (TLS) polymerases Polη and Rev1 colocalize with proliferating cell nuclear antigen at nuclear foci, presumably representing stalled replication sites. However, it is unclear whether the localization of one polymerase is dependent on another. Furthermore, there is no report on the in vivo characterization of the Rev3 catalytic subunit of the B-family TLS polymerase Polζ. Here we describe the detection of endogenous human Polη, Rev1, and Rev3 by immunocytochemistry using existing or newly created antibodies, as well as various means of inhibiting their expression, which allows us to examine the dynamics of endogenous TLS polymerases in response to UV irradiation. It is found that Rev1 and Polη are independently recruited to the nuclear foci, whereas the Rev3 nuclear focus formation requires Rev1 but not Polη. In contrast, neither Rev1 nor Polη recruitment requires Rev3. To further support these conclusions, we find that simultaneous suppression of Polη and Rev3 results in an additive cellular sensitivity to UV irradiation. These observations suggest a cooperative and sequential assembly of TLS polymerases in response to DNA damage. They also support and extend the current polymerase switch model.  相似文献   

10.
The application of radionuclides for the localization of essential trace elements in vivo and the characterization of their binding proteins is a story of intermittently made improvements of the techniques used for their detection. In this study we present the use of neutron activation analysis and different autoradiographic imaging methods including real-time digital autoradiography to reveal new insights in the hierarchy of selenium homeostasis. Selenoproteins containing the essential trace element selenium play important roles in the CNS. Although the CNS does not show the highest selenium concentration in the case of selenium-sufficient supply in comparison with other organs, it shows a high priority for selenium uptake and retention in the case of dietary selenium deficiency. To characterize the hierarchy of selenium supply in the brain, in vivo radiotracer labeling with 75Se in rats with different selenium status was combined with autoradiographic detection of 75Se in brain tissue sections and 75Se-labeled selenoproteins after protein separation by two-dimensional gel electrophoresis. This study demonstrates significant differences in the uptake of 75Se into the brain of rats with different selenium status. A brain region-specific uptake pattern of the radiotracer 75Se in selenium-deficient rats could be revealed and the CSF was identified as a key part of the brain selenium homeostasis.  相似文献   

11.
Lamin B1 loss is a senescence-associated biomarker   总被引:1,自引:0,他引:1  
Cellular senescence is a potent tumor-suppressive mechanism that arrests cell proliferation and has been linked to aging. However, studies of senescence have been impeded by the lack of simple, exclusive biomarkers of the senescent state. Senescent cells develop characteristic morphological changes, which include enlarged and often irregular nuclei and chromatin reorganization. Because alterations to the nuclear lamina can affect both nuclear morphology and gene expression, we examined the nuclear lamina of senescent cells. We show here than lamin B1 is lost from primary human and murine cell strains when they are induced to senesce by DNA damage, replicative exhaustion, or oncogene expression. Lamin B1 loss did not depend on the p38 mitogen-activated protein kinase, nuclear factor-κB, ataxia telangiectasia-mutated kinase, or reactive oxygen species signaling pathways, which are positive regulators of senescent phenotypes. However, activation of either the p53 or pRB tumor suppressor pathway was sufficient to induce lamin B1 loss. Lamin B1 declined at the mRNA level via a decrease in mRNA stability rather than by the caspase-mediated degradation seen during apoptosis. Last, lamin B1 protein and mRNA declined in mouse tissue after senescence was induced by irradiation. Our findings suggest that lamin B1 loss can serve as biomarker of senescence both in culture and in vivo.  相似文献   

12.
A metabolic biomarker‐based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery‐phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure‐based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9‐point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.  相似文献   

13.
uv sensitivity of cultured human epidermal keratinocytes was analyzed at different growth conditions and compared with the sensitivity of dermal fibroblasts derived from the same skin specimen. No significant differences in survival curves were found between these two cell types, although keratinocytes grown under standard conditions were slightly more resistant to uv irradiation than fibroblasts. The extracellular concentration of calcium appeared to be critical not only in the regulation of keratinocyte proliferation and differentiation, but also in the uv sensitivity of these cells: keratinocytes grown under conditions which favor cell proliferation (low calcium concentration) are more resistant to uv irradiation than those grown under conditions favoring differentiation (high calcium concentration). Two-dimensional protein gel electrophoresis was used to detect a possible effect of uv irradiation on the accumulation of specific mRNAs in the cytoplasm and/or on the synthesis of specific proteins. Proteins were pulse labeled in vivo with [35S]methionine or synthesized in vitro in rabbit reticulocyte lysates on mRNA isolated from keratinocytes that were irradiated with different uv doses at different periods of time prior to isolation. Alterations in expression were demonstrated for several proteins in both in vivo and in vitro experiments.  相似文献   

14.

Background

Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.

Methods and findings

We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.

Conclusions

Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active enzymes on NPs as the basis for a highly rapid and sensitive biomarker detection platform. This addresses a key challenge in developing a PoCT platform for time sensitive and difficult to diagnose pathologies.  相似文献   

15.
The effect of neutron doses from a D-T compact neutron generator on the liver cells of adult male and female albino Swiss mice was investigated. Fast neutrons (14.5 MeV) were delivered to the whole body in a single dose or in two, four, six or eight equal doses separated by 3-day intervals. The lowest dose, 100 rem, was given for an exposure time of 6 hours and was then steadily raised to 912 rem for an exposure time of 48 hours. During exposure the neutron flux was controlled by the activation foil technique. Animals were killed for testing after each irradiation. Histological examination of the hepatocytes in the light microscope showed marked degenerative changes only after the longer irradiation periods (24, 36 and 48 h). Electron microscopy showed cytological (cytoplasmic and nuclear) changes in the hepatocytes after only 12 hours' irradiation. Densitometric scans of electron micrographs of control and 12 h-irradiated livers indicated that the control hepatocyte interphase nucleus contains approximately 72% heterochromatin, while the irradiated nucleus contains only 64% heterochromatin.  相似文献   

16.
Spyrou  N. M.  Altaf  W. J.  Gill  B. S.  Jeynes  C.  Nicolaou  G.  Pietra  R.  Sabbioni  E.  Surian  M. 《Biological trace element research》1990,26(1):161-168

Fluorine concentrations in bone biopsy samples taken from the iliac crest of subjects, divided into four groups depending on the length of dialysis treatment, and aluminium levels in blood and bone pathology, in terms of osteoporosis, were determined by two instrumental methods. Proton-induced gamma-ray emission (PIGE), making use of the resonance reaction of19F(p,αγ)16O at 872 keV, and cyclic neutron activation analysis (CNAA), using the19F(n,γ)20F reaction in a reactor irradiation facility, were employed. Rutherford backscattering (RBS) was used to calculate the volume, and, hence, mass of the sample excited in PIGE by determining the major element composition of the samples in order to express results in terms of concentration. From this preliminary investigation, a relationship is suggested between fluorine concentrations in bone and aluminium levels in the system.

  相似文献   

17.
Candidate proteomic biomarker discovery from human plasma holds both incredible clinical potential as well as significant challenges. The dynamic range of proteins within plasma is known to exceed 10(10), and many potential biomarkers are likely present at lower protein abundances. At present, proteomic based MS analyses provide a dynamic range typically not exceeding approximately 10(3) in a single spectrum, and approximately 10(4)-10(6) when combined with on-line separations (e.g., reversed-phase gradient liquid chromatography), and thus are generally insufficient for low level biomarker detection directly from human plasma. This limitation is providing an impetus for the development of experimental methodologies and strategies to increase the possible number of detections within this biofluid. Discussed is the diversity of available approaches currently used by our laboratory and others to utilize human plasma as a viable medium for biomarker discovery. Various separation, depletion, enrichment, and quantitative efforts as well as recent improvements in MS capabilities have resulted in measurable improvements in the detection and identification of lower abundance proteins (by approximately 10-10(2)). Despite these improvements, further advances are needed to provide a basis for discovery of candidate biomarkers at very low levels. Continued development of depletion and enrichment techniques, coupled with improved pre-MS separations (both at the protein and peptide level) holds promise in extending the dynamic range of proteomic analysis.  相似文献   

18.
Recent development and uses of neutron activation techniques for human hair analyses are reviewed. The method of neutron activation analysis (NAA) appears to have the potential to be used as a tool for environmental pollution monitoring. Principally, two types of NAA procedure are in use nowadays for multielement analyses of human scalp hair. The more common of these is the method of instrumental neutron activation analysis (INAA), consisting of a single short-term (3-10 hours) exposure of hair to a beam of neutrons in a nuclear reactor, followed by two measurements of gamma-ray spectra at 2-3 days and 3-4 weeks after the end of irradiation. The following microelements can be commonly determined by this type of activation procedure: As, Au, Br, Cu, K, La, Na, Sb, Sm, Co, Cr, Cs, Fe, Hg, Rb, Sc, Se and Zn. The other of the two procedures involves the use of radiochemical separation techniques and is employed for quantitative determinations of elements that are not easily determined by INAA (Mo, Cd, Ni, etc.), or in cases where there is a need to achieve the lowest possible limits of analytical determination. The accuracy of NAA techniques is strongly dependent on the hair sampling and hair sample processing methods used. The analytical error of this method may vary within the range of 5-15%. Its applicability as a tool for monitoring the environmental pollution level is here demonstrated on an example of groups of individuals living in the areas differing by the degree of environmental pollution. The use of other biopsy materials, such as e.g. mammalian hair, for the purpose of environmental exposure monitoring is also considered in this review.  相似文献   

19.
1. Crystallized soy bean trypsin inhibitor, at a concentration of 100 microg./ml., suppressed the production of thrombin from a mixture of prothrombin and blood thrombokinase. The experiment was performed in the presence of 0.011 M oxalate, in order to minimize the possibility of participation by accessory factors which require ionic calcium. The results are in accord with the view that thrombokinase is a trypsin-like enzyme. 2. When a solution of blood thrombokinase was centrifuged at 85,000 g for 120 minutes, almost all the activity remained in the supernate. This supernate activated the supernate from a prothrombin solution which had been similarly centrifuged. The activation of prothrombin by thrombokinase can proceed in the absence of material completely sedimentable in 120 minutes at 85,000 g. 3. An "accelerator" reagent was prepared by treating bovine serum with barium carbonate, and then passing the serum through a column of diatomaceous earth. This "accelerator" was used together with prothrombin, blood thrombokinase, Howell's cephalin, and calcium chloride to compose a five-reagent thrombin-producing system. In this system, no thrombin was produced without thrombokinase. On the other hand, thrombin was produced from prothrombin and thrombokinase, even when all the other reagents were omitted. When calcium was omitted, thrombokinase was able to function; but cephalin and the "accelerator" reagent were ineffective. 4. Quantitative tests indicated that the "accelerator" reagent exerted an effect distinct from those of thrombokinase and cephalin. However, it is not certain whether the "accelerator" reagent functioned as an accessory factor, as a potential source of more thrombokinase, or both. In the experiments reported, thrombokinase was primary to, or necessary for, the effect of "accelerator." 5. The effectiveness of thrombokinase was multiplied a hundred times or more, when complemented by calcium, cephalin, and "accelerator" reagent. Ionic calcium was a necessary component of this complementing system. This may help to explain why removal of calcium ions keeps blood fluid, even though thrombokinase, by itself, is little influenced either by calcium ions or by oxalate.  相似文献   

20.
An LBO (Li2B4O7) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm2, i.e., from the chamber response divided by neutron fluence (cm?2). The measured LBO chamber sensitivities were 2.23 × 10?7 ± 0.34 × 10?7 (pC cm2) for thermal neutrons and 2.00 × 10?5 ± 0.12 × 10?5 (pC cm2) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号