首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of tyrosine kinase and tyrosine-phosphorylated proteins was investigated in coconut tissues cultured in vitro. In order to study this phenomenon, plumular explants were taken from mature zygotic embryos and cultured in a medium that induces somatic embryogenesis. Immunoblot analyses of soluble proteins of coconut cultured tissues with a recombinant monoclonal antibody against phosphotyrosine detected protein bands with molecular masses ranging from 170 to 27 kDa. The highest response was exhibited by plumule-forming callus, which decreased both in number and intensity of bands with a longer time of in vitro culture. The specific immunodetection was corroborated by incubating the membranes with anti-phosphotyrosine antibody in the presence of 1 mM phosphotyrosine. Tyrosine phosphorylated proteins was also suggested by the presence of phosphoproteins resistant to alkaline treatment. In plumule, plumular callus and callus with globular embryos and shoots, a 41-kDa protein remained phosphorylated after alkaline treatment. In plumule, most [32P]-proteins remained phosphorylated after alkaline treatment. Phosphoaminoacid analysis in protein hydrolysates from [32P]-labelled 41-kDa protein showed the presence of [32P]-tyrosine and [32P]-threonine. Evaluation of tyrosine kinase activity in these tissues by the use of RR-SRC, a synthetic peptide substrate (derived from the amino acid sequence surrounding the phosphorylation site), showed that the activity was highest in plumule forming callus and initial explant, whereas in other tissues, tyrosine kinase activity decreased to values close to zero. Genistein, a specific tyrosine kinase inhibitor, diminished the ability of soluble extracts from coconut tissues cultured in vitro to incorporate 32P into RR-SRC. These results suggest the presence of tyrosine phosphorylated proteins and tyrosine kinase activity in coconut tissues that have been cultured in vitro.  相似文献   

2.
Several protein kinases that copurify with neurofilaments (NF) were identified and each kinase was assessed for its ability to phosphorylate NF proteins. NFs were isolated using an axonal flotation procedure and the kinases were extracted from NFs with 0.8 M KCl. NF kinases were incubated with peptide substrates for selected protein kinases, [32P]ATP and protein kinase cofactors and inhibitors to characterize the kinases. Using peptide substrates, three types of kinase were identified, and a fourth was identified using NF protein as substrate. The first three kinases were the catalytic subunit of cAMP-dependent protein kinase, calcium-calmodulin dependent protein kinase II and a cofactor-independent kinase that phosphorylated prepro VIP sequence 156-170 and was inhibited by heparin. Using NF proteins as substrate, a fourth kinase was identified which was cofactor-independent and was not inhibited by heparin. Neither cofactor-independent kinase was casein kinase II. NF proteins were phosphorylated in vitro on serine and threonine, primarily by the two cofactor-independent kinases. Using [alpha-32P]8-N3ATP for affinity labeling, one kinase of 43,800 Da was identified. Thus, in addition to cAMP-dependent protein kinase and calcium-calmodulin dependent protein kinase II, two kinases have been found which are primarily responsible for NF phosphorylation in vitro and are cofactor-independent.  相似文献   

3.
More than 40 protein species including RNA polymerase were found to be phosphorylated in Escherichia coli on analyses of 32P-labeled cell lysates by single and two-dimensional gel electrophoresis and autoradiography. The protein species and the level of phosphorylation varied depending on the cell growth phase. With [gamma-32P]ATP as a substrate, cell lysates phosphorylated endogenous proteins in vitro which were predominantly phosphorylated in vivo. Both serine and threonine were the major phosphate acceptors in whole cell lysates. Starting from a partially purified RNA polymerase preparation with the protein phosphorylation activity and using an E. coli protein with an apparent Mr = 90K (K represents X 1000) as the substrate, we purified a protein kinase with a native Mr approximately 120K to apparent homogeneity. The protein kinase is either a heterodimer of 61K and 66K polypeptides or a homodimer of one of these polypeptides. We also isolated a 100K protein with self-phosphorylation activity.  相似文献   

4.
The phosphorylation of DNA topoisomerase II in Drosophila Kc tissue culture cells was characterized by in vivo labeling studies and in vitro studies that examined the modification of exogenous enzyme in total homogenates of these embryonic cells. Several lines of evidence identified casein kinase II as the kinase primarily responsible for phosphorylating DNA topoisomerase II. First, the only amino acyl residue modified in the enzyme was serine. Second, partial proteolytic maps of topoisomerase II which had been labeled with [32P]phosphate by Drosophila cells in vivo, by cell homogenates in vitro, or by purified casein kinase II were indistinguishable from one another. Third, phosphorylation in cell homogenates was inhibited by micrograms/ml concentrations of heparin, micromolar concentrations of nonradioactive GTP, or anti-Drosophila casein kinase II antiserum. Fourth, cell homogenates were able to employ [gamma-32P]GTP as a phosphate donor nearly as well as [gamma-32P]ATP. Although topoisomerase II was phosphorylated in homogenates under conditions that specifically stimulate protein kinase C, calcium/calmodulin-dependent protein kinase, or cAMP-dependent protein kinase, modification was always sensitive to anti-casein kinase II antiserum or heparin. Thus, under a variety of conditions, topoisomerase II appears to be phosphorylated primarily by casein kinase II in the Drosophila embryonic Kc cell system.  相似文献   

5.
Plasma membrane preparations from lymphocytes, platelets and red cells were phosphorylated in the presence of [gamma-32 P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase increased the 32P-labelling of proteins and polyphosphoinositides in lymphocyte, platelet and in some red cell membranes. In the majority of red cell membrane preparations the 32P-labelling of proteins and polyphosphoinositides seemed to be stimulated by the catalytic subunit of the endogenous protein kinase, since the phosphorylation was not increased by the addition of the catalytic subunit but it was decreased by the heat-stable inhibitor protein of the protein kinase. Different sets of 32P-labelled proteins were shown by SDS-gel electrophoresis in the membranes of the 3 cell types. A 24000-Mr protein was the only one which was phosphorylated by the catalytic subunit in each membrane.  相似文献   

6.
Four non-ribosomal proteins from native 40 S ribosomal subunits with mol.wts. of 110 000, 84 000, 68 000 and 26 000 were phosphorylated in vivo when ascites cells were incubated in the presence of [32P]Pi. The 110 000-, 84 000- and 26 000-dalton proteins are identical with phosphorylated products from native 40 S subunits after phosphorylation in vitro by a cyclic nucleotide-independent protein kinase. Phosphoserine was the major phosphorylated amino acid of the proteins phosphorylated in vivo and in vitro.  相似文献   

7.
The species of proteins associated with chromatin and ribosomes of simian virus 40 (SV40)-transformed and untransformed monkey, mouse, and rat cells have been compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after phosphorylation of these proteins either in vivo or in vitro. In vitro phosphorylation was carried out by protein kinase associated with these organelles and [gamma-(32) P]ATP as the phosphoryl donor. The reaction products contained both phosphoserine and phosphothreonine in approximately equal amounts. The electrophoretic analysis of the phosphorylated proteins revealed that the highly phosphorylated protein with a molecular weight of approximately 90,000 (90K protein) was associated with chromatin and ribosomes from transformed cells but not from untransformed cells. The 90K protein could be extracted from chromatin and ribosomes with 0.5 to 1.0 M NaCl or KCl. The 90K protein was still associated with the runoff ribosomes prepared by the puromycin reaction of the post-mitochondrial supernatant in the protein-synthesizing system. In vitro phosphorylation of chromatin and ribosomes from SV40 tsA-transformed mouse and rat cells indicated that the amounts of 90K protein associated with these organelles decreased greatly when the cells were cultivated at the restrictive temperature. A similar temperature-dependent decrease in the amount of (32)P-labeled 90K protein was observed in nonhistone chromosomal and ribosome-associated protein fractions prepared from SV40 tsA-transformed cells labeled with [(3)H]leucine and [(32)P]orthophosphate in vivo. In vitro phosphorylated 90K protein in nonhistone chromosomal and ribosome-associated proteins extracted with high salt was not immunoprecipitated with anti-SV40 T sera.  相似文献   

8.
Fibronectin phosphorylation by ecto-protein kinase   总被引:1,自引:0,他引:1  
The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [gamma-32]ATP for 10 min at 37 degrees C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [gamma-32P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.  相似文献   

9.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

10.
A gene pknA, coding for an eukaryotic-type protein Ser/Thr kinase, was cloned from the Streptomyces coelicolor A3(2) chromosome. The PknA protein kinase, containing the C-terminal eukaryotic-type kinase domain with an N-terminal extension, was expressed in Escherichia coli and Streptomyces lividans. The affinity purified MBP-PknA fusion protein was assayed for kinase activity that showed its ability to autophosphorylate in vitro in the presence of [gamma-32P]ATP. The activity was Mn2+ dependent. The preautophosphorylated kinase phosphorylated at least two proteins (sizes 30 and 32 kDa) in the S. coelicolor J1501 cell-free extracts of all developmental stages. The larger of them was also phosphorylated in vitro by an endogenous protein kinase in late stages extracts, but not earlier. Although Mn2+ dependent protein phosphorylation has previously been described in Streptomyces, this is the first report of a gene encoding such an enzyme in this genus.  相似文献   

11.
The activity of endogenous nuclear protein kinases has been probed in an vitro assay system of isolated nuclei from Chironomus salivary gland cells. The phosphorylation of a set of seven prominent rapidly phosphorylated non-histone proteins and of histones H3, H2A and H4 was analyzed using ATP or GTP as phosphoryl donor and heparin as protein kinase effector. The core histones H2A and H3 both incorporate 32P from [gamma-32P]ATP as well as from [gamma-32P]GTP but their phosphorylation is differentially affected by heparin. The phosphorylation of H2A is blocked by heparin while that of H3 is even stimulated in the presence of heparin when ATP is used as phosphate donor. H4 is unable to incorporate phosphate groups from GTP but its ATP-based phosphorylation is heparin sensitive. Of the non-histone protein kinase substrates, we could only detect two, the 44-kDa and 115-kDa proteins, which are heparin sensitive with either ATP or GTP and, thus, strictly meet the criteria for casein kinase type II-specific phosphorylation. The investigated histones and non-histone proteins can be grouped into three broad categories on the basis of their phosphorylation properties. (A) Proteins very likely affected by casein kinase NII. (B) Proteins phosphorylated by strictly ATP-specific protein kinases. (C) Proteins phosphorylated by ATP as well as GTP utilizing protein kinase(s) other than casein NII. Category B proteins can be subdivided into proteins phosphorylated in a heparin-resistant (B1) and heparin-sensitive (B2) manner. The phosphorylation of category C proteins may be heparin sensitive with ATP only (C1), heparin sensitive with GTP only (C2), heparin insensitive with both ATP and GTP (C3) or stimulated by heparin (C4).  相似文献   

12.
Two proteins of yeast 40S ribosome subunit and four proteins of the 60S ribosome subunit were labelled in vivo with [32P]orthophosphate. Five of these proteins were phosphorylated by protein kinase 3, an enzyme which is cyclic AMP-independent and uses ATP and GTP as phosphoryl donors. Two proteins, belonging to the 60S ribosome subunit were phosphorylated by another, highly specific, cyclic AMP-independent protein kinase 1 B. Both in vivo and in vitro the most extensively phosphorylated protein species were acidic proteins, L44, L45 (according to the nomenclature of Kruiswijk & Planta, Molec. Biol. Rep., 1, 409-415, 1974) possibly corresponding to bacterial L7 and L12 proteins. The 40S ribosomal protein, S9, analogous to mammalian S6 protein, was phosphorylated in vivo but was not phosphorylated in vitro by either of the cyclic AMP-independent protein kinases. The obtained results clearly indicate that cyclic AMP-independent yeast protein kinases might be involved in the modification in vivo of some ribosomal proteins, in particular of the strongly acidic proteins of 60S ribosome subunit.  相似文献   

13.
A human skeletal actin.tropomyosin.troponin complex was phosphorylated in the presence of [gamma-32 P]ATP, Mg2+, adenosine 3':5'-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 microM cyclic AMP. In the presence of 10(-7) M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5.10(-5) M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstitute human skeletal actomyosin made with the [32P] phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

14.
Crude ribosomes from Saccharomyces cerevisiae cultures were phosphorylated in vitro when incubated in the presence of [gamma-32P]ATP. Analysis of the ribosomal proteins with two-dimensional electrophoresis revealed that of the 29 proteins identified in the small subunit, only protein S6 was phosphorylated. Of the 37 proteins identified in the large subunit, one was highly phosphorylated (L3) and two only slightly phosphorylated (L11 and L14). The protein kinase activity associated with the ribosomes was extracted with 1 M KCl and was not dependent on adenosine 3':5'-monophosphate; it preferentially phosphorylated casein and phosvitin, but was less active on histones. Structural ribosomal proteins were also phosphorylated in vivo when the yeast cultures were incubated with [32P]orthophosphate; the radioactivity resistant to hydrolysis by hot perchloric acid was incorporated into the proteins of the two subunits. Radioactive phosphoserine was found by subjecting hydrolysates of ribosomal proteins to high-voltage electrophoresis. After two-dimensional electrophoresis, one poorly phosphorylated protein (S10) was identified in the small subunit. In the large subunit, one protein (L3) was highly labelled, and two proteins (L11 and L24) only slightly labelled.  相似文献   

15.
The abilities of proteins endogenous to normal and neoplastic tissues to serve as substrates in a protein-phosphorylation reaction in vitro were compared. After the tissue extracts were incubated with [gamma-32P]ATP, the phosphorylated proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the dried gels were subjected to radioautography. Considerable incorporation of 32P into a protein of mol.wt. 135000 was observed with extracts from foetal tissues and tumours, but only minimal incorporation into this protein occurred when extracts from adult tissues were used. The ability of this protein to become phosphorylated in vitro may be related to cell proliferation. When ascites cells were incubated with [32P]Pi, one of the major phosphoproteins migrated on sodium dodecyl suphate/polyacrylamide gels at mol.wt. 135000, suggesting that this protein can be phosphorylated both in intact cells and broken-cell preparations. A protein of mol.wt. 87000 was highly phosphorylatable in extracts from solid tumours, but was not phosphorylated in extracts from ascites tumours, foetal or adult tissues. The phosphorylation pattern of these two proteins can thus distinguish solid neoplasms and normal adult tissues from ascites tumours and from foetal tissues. A protein of mol.wt. 49000, which was the most labelled protein in adult tissues, was also one of the major phosphoproteins in foetal and neoplastic tissues. Numerous mechanisms are postulated to explain how the extent of 32P incorporation into a protein could vary as a function of biological state.  相似文献   

16.
Activation of the redox-controlled protein kinase of thylakoid membranes is detectable in vivo by measuring radioisotope incorporation into the light-harvesting Chl a/b protein and four photosystem II proteins (8.3, 32, 34, and 44 kDa). In normal barley leaves, the kinase is active under both aerobic and anaerobic (N2) conditions, but in the Chl b-less chlorina f2 mutant it is active only under anaerobic conditions. The responsiveness of this enzyme in the mutant to changes in the gas phase has been exploited to distinguish its protein substrates from those of other leaf protein kinases. Most of the soluble phosphoproteins of normal and mutant leaves (including a conspicuously labeled 67-kDa polypeptide) are labeled equally under both aerobic and anaerobic conditions, indicating that they are not substrates of the redox-controlled protein kinase. The major exception is a 12-kDa phosphoprotein, which is labeled in the mutant only under anaerobic conditions. The 67- and 12-kDa phosphoproteins are located in the chloroplast and are labeled when isolated organelles are incubated with [32P]orthophosphate in the light. When thylakoids and stroma are prepared from chloroplasts and are incubated with [gamma-32P]ATP in vitro, the 12-kDa protein is phosphorylated in the thylakoid preparation and then released from the membranes into the medium. The electron transport inhibitor diuron blocks activation of the redox-controlled kinase and prevents phosphorylation of the 12-kDa protein, which is thus the first example of a soluble protein to be phosphorylated by the thylakoid-bound protein kinase. The 67-kDa protein is phosphorylated by a distinct stromal kinase whose activity is not sensitive to diuron.  相似文献   

17.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

18.
This paper describes the purification of a 47 kDa protein from Xenopus laevis oocytes that becomes phosphorylated when the oocytes undergo meiotic maturation. This protein (p47) is part of a high molecular mass complex containing at least two other proteins of molecular mass 30 and 36 kDa. This complex can be isolated from stage VI oocytes before maturation. We obtained a pattern for phosphopeptides in p47 phosphorylated in vivo very similar to that of the purified protein phosphorylated in vitro by p34cdc2 (a H1 kinase which is a component of the M-phase promoting factor) and [gamma-32P]ATP. Therefore, the purified p47, already described as a marker of MPF activity, is the first reported in vivo substrate for the cell division control kinase.  相似文献   

19.
We have examined phosphorylation of nerve growth factor (NGF) receptor in cultured sympathetic neurons and PC12 cells. Dissociated rat superior cervical ganglion neurons or PC12 cells were incubated with 32Pi to label cellular phosphoproteins. Membrane proteins were solubilized, and NGF receptor proteins were immunoprecipitated with the monoclonal antibody 192-IgG. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography showed that NGF receptor components of Mr = 80,000 and Mr = 210,000 were phosphorylated. Phosphorylation of neither species was affected by treating the cells with NGF or phorbol 12-myristate 13-acetate. When the 80,000-Da protein was subjected to complete trypsin proteolysis and then analyzed by reverse phase liquid chromatography, two 32P-labeled peptides were resolved. The more hydrophobic peptide accounted for most of the 32P and contained only phosphoserine; the other peptide contained phosphoserine and phosphothreonine. No phosphotyrosine was detected in the receptor proteins. When receptor molecules from nonlabeled PC12 cells were immunoprecipitated and then incubated in vitro with [gamma-32P]ATP and the cAMP-independent protein kinase FA/GSK-3, phosphorylation occurred predominantly on serine and to a lesser extent on threonine. However, the immunoprecipitated receptor proteins neither autophosphorylated nor were they detectably phosphorylated by cAMP-dependent protein kinase, casein kinase II, or protein kinase C (the Ca2+/phospholipid-dependent enzyme). We conclude that binding units of the NGF receptor are phosphorylated constitutively in at least two sites in intact cells and that they can be phosphorylated by FA/GSK-3 in vitro.  相似文献   

20.
We have used the methods of planar cell and membrane monolayer formation and monolayer splitting to study structural details of the transmembrane signaling process mediated by protein kinase C. We analyzed human red cell membrane proteins phosphorylated by phorbol ester activation of protein kinase C. Planar single membrane preparations, extraction procedures, and gel electrophoresis coupled with silver staining and autoradiography confirmed that two bands in the 100 kDa region, and bands 4.1, and 4.9, were peripheral and phosphorylated by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). TPA also stimulated minor incorporation of [32 P]Pi into most integral membrane proteins, including band 3, glycophorin A, the band 4.5 region (glucose transporter) and band 7. Planar cell and membrane-splitting methods revealed that neither integral nor peripheral phosphorylated polypeptides were cleaved by freeze fracture, that all phosphorylated peripheral proteins partitioned intact with the cytoplasmic side of the membrane, and that the percentages of [32P]Pi-labeled peripheral proteins were the same in split membrane cytoplasmic leaflets as in intact membranes. As a unique approach to examining protein topographies membrane splitting provides strong evidence that the major phosphorylated products of the polyphosphatidylinositide pathway are topographically associated with the cytoplasmic leaflet of the human erythrocyte plasma membrane. We further conclude that TPA-induced phosphorylation of red cell peripheral proteins does not significantly alter their transbilayer partitioning patterns after membrane splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号