首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feet of chicks are normally covered with scales. Injection of retinoic acid into the amniotic cavity of 10-day chick embryos causes the formation of feathers on the foot scales. To elucidate whether retinoic acid affects primarily the epidermis or the dermis, heterotypic dermal-epidermal recombinants of tarsometatarsal skin were tested as to their morphogenetic capacity, when grafted to the chick chorioallantoic membrane. Recombinants involving treated epidermis and untreated dermis formed feathered scales, while the reverse recombinants of untreated epidermis and treated dermis led to the formation of scales only. Likewise the association of treated tarsometatarsal dermis with untreated epidermis from a non-appendage-forming region (the midventral apterium) resulted in the formation of scales only. These results show that retinoic acid affects primarily the epidermis. Further insight into the mechanism of dermal-epidermal interaction was gained by heterotopic recombinations of early (8.5- and 10-day) untreated tarsometatarsal dermis with epidermis from the midventral apterium. These recombinants formed scales, proving that tarsometatarsal dermis is endowed with scale-forming properties as early as 8.5 days of incubation. Finally, it is concluded that retinoic acid acts on the chick foot epidermal cells by temporarily inhibiting their scale placode-forming properties, allowing their latent feather placode-forming properties to be expressed.  相似文献   

2.
Little is known of the lipid content of beta-keratin-producing cells such as those of feathers, scutate scales, and beak. The sequence of epidermal layers in some apteria and in interfollicular epidermis in the zebrafinch embryo (Taeniopygia guttata castanotis) was studied. Also, the production of beta-keratin in natal down feathers and beak was ultrastructurally analyzed in embryos from 3-4 to 17-18 days postdeposition, before hatching. Two layers of periderm initially cover the embryo, but there are eventually 6-8 over the epidermis of the beak. In the beak and sheath cells of feathers, peridermal granules are numerous at 12-14 days postdeposition but they are less frequent in apteria. These granules swell and disappear during sheath or peridermal degeneration at 15-17 days postdeposition. A thin beta-keratin layer forms under the periderm among feather germs of pterylous areas but is discontinuous or disappears in apteria. In differentiating cells of barbs, barbules, and calamus cells of natal down, electron-dense beta-keratin filaments form bundles oriented along the main axis of these cells. Cells of the pulp epidermis and collar, at the base of the follicle, contain lipids and bundles of alpha-keratin filaments. Degenerating pulp cells show vacuolization and nuclear pycnosis. During beta-keratin packing, keratin bundles turn electron-pale, perhaps due to the addition of lipids to produce the final, homogenous beta-keratin matrix. In contrast to the situation in feathers, in the cells of beak beta-keratin packets are irregularly oriented. In both feather and beak epidermal cells the Golgi apparatus and smooth endoplasmic reticulum produce vesicles containing lipid-like material which is also found among forming beta-keratin. The contribution of lipids or lipoprotein to the initial aggregation of beta-keratin molecules is discussed.  相似文献   

3.
The dermal-epidermal tissue interaction in the chick embryo, leading to the formation of feathers and scales, provides a good experimental system to study the transfer between tissues of signals which specify cell type. At certain times in development, the dermis controls whether the epidermis forms feathers or scales, each of which are characterized by the synthesis of specific beta-keratins. In our culture system, a dermal effect on epidermal differentiation can still be observed, even when the tissues are separated by a Nuclepore filter, although development is abnormal. Epidermal morphological and histological differentiation in transfilter cultures are distinct and recognizable, more closely resembling feather or scale development, depending on the regional origin of the dermis. Differentiation is more advanced when epidermis is cultured transfilter from scale dermis than from feather dermis, as assessed by morphology and histology, as well as the expression of the tissue-specific gene products, the beta-keratins. Two-dimensional polyacrylamide gel analysis of the beta-keratins reveals that scale dermis cultured transfilter from either presumptive scale or feather epidermis induces the production of 7 of the 9 scale-specific beta-keratins that we have identified. Feather dermis, although less effective in activating the feather gene program when cultured transfilter from either presumptive feather or scale epidermis, is able to turn on the synthesis of 3 to 6 of the 18 feather-specific beta-keratins that we have identified. However, scale epidermis in transfilter recombinants with feather dermis also continues to synthesize many of the scale-specific beta-keratins. Using transmission and scanning electron microscopy, we detect no cell contact between tissues separated by a 0.2-micron pore diameter Nuclepore filter, while 0.4-micron filters readily permit cell processes to traverse the filter. We find that epidermal differentiation is the same with either pore size filter. Furthermore, we do not detect a basement membrane in transfilter cultures, implying that neither direct cell contact between dermis and epidermis, nor a basement membrane between the tissues is required for the extent of epidermal differentiation that we observe.  相似文献   

4.
Signaling dynamics of feather tract formation from the chick somatopleure   总被引:5,自引:0,他引:5  
In the chick, most feathers are restricted to specific areas of the skin, the feather tracts or pterylae, while other areas, such as the apteria, remain bare. In the embryo, the expansion and closure of the somatopleure leads to the juxtaposition of the ventral pteryla, midventral apterium and amnion. The embryonic proximal somatopleural mesoderm is determined to form a feather-forming dermis at 2 days of incubation (E2), while the embryonic distal and the extra-embryonic somatopleure remain open to determination. We found a progressive, lateral expression of Noggin in the embryonic area, and downregulation of Msx1, a BMP4 target gene, with Msx1 expression being ultimately restricted to the most distal embryonic and extra-embryonic somatopleural mesoderm. Msx1 downregulation thus correlates with the formation of the pterylae, and its maintenance to that of the apterium. Suspecting that the inhibition of BMP4 signaling might be linked to the determination of a feather-forming dermis, we grafted Noggin-expressing cells in the distal somatopleure at E2. This elicited the formation of a supplementary pteryla in the midventral apterium. Endogenous Noggin, which is secreted by the intermediate mesoderm at E2, then by the proximal somatopleure at E4, could be sufficient to suppress BMP4 signaling in the proximal somatopleural mesoderm and then in part of the distal somatopleure, thus in turn allowing the formation of the dense dermis of the future pterylae. The same result was obtained with the graft of Shh-producing cells, but Noggin and Shh are both required in order to change the future amnion into a feather-bearing skin. A possible synergistic role of endogenous Shh from the embryonic endoderm remains to be confirmed.  相似文献   

5.
Hydrocortisone (30-40 micrograms on day 10) and triamcinolone (10-20 ng on day 7-8) both inhibit or alter morphogenesis of scales and feathers. However, there are marked temporal and region-specific differences in the effects induced by these two glucocorticoids. Triamcinolone (TAC) is most teratogenic on day 7 or 8, inhibiting formation of spurs and feathers and inducing club feather formation. Hydrocortisone is most teratogenic later in development, on day 10. Unique hydrocortisone-induced responses are complete inhibition of scutellate scale formation, bent feathers, and apteria around the external auditory meatus. Altered synthesis of keratin polypeptides follows inhibition of scale morphogenesis by hydrocortisone and TAC. These in vivo data suggest that heterogeneity of glucocorticoid binding occurs in embryonic chick metatarsal skin. Survival data indicate that TAC is 2,000 times more embryotoxic than hydrocortisone.  相似文献   

6.
The feathers of birds develop from embryonic epidermal lineages that differentiate during outgrowth of the feather germ. Independent cell populations also form an embryonic epidermis on scutate scales, which consists of peridermal layers, a subperiderm, and an alpha stratum. Using an antiserum (anti-FbetaK) developed to react specifically with the beta (beta) keratins of feathers, we find that the feather-type beta keratins are expressed in the subperiderm cells of embryonic scutate scales, as well as the barb ridge lineages of the feather. However, unlike the subperiderm of scales, which is lost at hatching, the cells of barb ridges, in conjunction with adjacent cell populations, give rise to the structural elements of the feather. The observation that an embryonic epidermis, consisting of peridermal and subperidermal layers, also characterizes alligator scales (Thompson, 2001. J Anat 198:265-282) suggests that the epidermal populations of the scales and feathers of avian embryos are homologous with those forming the embryonic epidermis of alligators. While the embryonic epidermal populations of archosaurian scales are discarded at hatching, those of the feather germ differentiate into the periderm, sheath, barb ridges, axial plates, barbules, and marginal plates of the embryonic feather filament. We propose that the development of the embryonic feather filament provides a model for the evolution of the first protofeather. Furthermore, we hypothesize that invagination of the epidermal lineages of the feather filament, namely the barb ridges, initiated the formation of the follicle, which then allowed continuous renewal of the feather epidermal lineages, and the evolution of diverse feather forms.  相似文献   

7.
Keratin proteins synthesized by dorsal or tarsometatarsal embryonic chick epidermis in heterotopic and heterospecific epidermal-dermal recombinants were analyzed by polyacrylamide gel electrophoresis and were compared to those produced by normal nondissociated dorsal and tarsometatarsal embryonic skin, as well as to those produced by control homotopic recombinants. Recombinant skins were grafted on the chick chorioallantoic membrane and grown for 8 or 11 days. Recombinants comprising dorsal feather-forming dermis formed feathers, irrespective of the origin of the epidermis. The electrophoretic band patterns of the keratins extracted from these feathers were of typical feather type. Conversely recombinants comprising tarsometatarsal scale-forming dermis formed scales, irrespective of the origin of the epidermis. The band patterns of the keratins extracted from the epidermis of these scales were of typical scale type. Heterospecific recombinants comprising chick dorsal feather-forming epidermis and mouse plantar dermis gave rise to six footpads arranged in a typical mouse pattern. In these recombinants, the chick epidermis produced keratins, the band pattern of which was of typical chick scale type. These results demonstrate that the dermis not only induces the formation of cutaneous appendages in confirmity with its regional origin, but also triggers off in the epidermis the biosynthesis of either of two different keratin types, in accordance with the regional type (feather, scale, or pad) of cutaneous appendages induced. The possible relationship between region-specific morphogenesis and cytodifferentiation is discussed in comparison with results obtained in other kinds of epithelial-mesenchymal interactions.  相似文献   

8.
To begin to study the role of particular proteins in inductive tissue interactions, we have used density labelling techniques to determine whether any dermal proteins are found between embryonic chick dermis and epidermis at a stage when the dermis plays an important inductive role in epidermal differentiation. Epidermis will form feathers or scales depending on whether it interacts with dorsal or foot dermis, respectively, and the dermis can still influence epidermal differentiation when direct cell contact between the tissues is blocked by a membrane filter during culturing (Peterson & Grainger, 1985). In transfilter experiments, we detect a subset of dermal proteins within the filter between the tissues. Several of these dermal proteins are deposited in a region-specific manner, that is, they are only found associated with filters from either dorsal or foot dermis. We have previously shown that the expression of some of these proteins is specific to particular regions of dermis and is also associated with the inductive potential of the dermis (Peterson & Grainger, 1986). We detect only 17 dermal proteins which are transferred across the filter in these cultures and found in direct association with epidermis; of these 14 are common to both dorsal and foot dermis, and 3 are deposited in a region-specific manner. Our results lead us to hypothesize a significant function for certain dermal proteins in this inductive interaction either as part of the extracellular matrix or in direct association with epidermis.  相似文献   

9.
The development of avian cutaneous appendages, feathers and scales, is known to arise from the epithelial-mesenchymal interaction. Here we show that FGF10 is associated with this developmental process as an early signal from mesenchymal cells underlying nascent cutaneous placodes. Expression of Fgf10 was detected in the mesenchymal cells underneath the developing placodes. Forced expression of Fgf10 in the femoral skin suppressed expression of Shh and a zinc finger gene snail-related (cSnR), while induced expression of Bmp2 in the interbud region, resulting in thickening of the epidermal layer. Furthermore, forced expression of Fgf10 in the foot skin caused marked ingrowings of the epidermis. The cells in the epidermal ingrowings expressed beta-catenin, proliferating cell nuclear antigen, and an epidermal stem cell marker p63. These results support the idea that FGF10 is a mesenchymally derived stimulator of epidermal development through crosstalk with bone morphogenetic protein (BMP), beta-catenin, and other signaling pathways.  相似文献   

10.
Unlike normal scutate scales whose outer and inner epidermal surfaces elaborate β (β-keratins) and α (α-keratins) strata, respectively, the scaleless mutant's anterior metatarsal epidermis remains flat and elaborates only an α stratum. Reciprocal epidermal-dermal recombinations of presumptive scale tissues from normal and mutant embryos have demonstrated that the scaleless defect is expressed only by the epidermis. In fact, the scaleless anterior metatarsal epidermis is unable to undergo placode formation. More recently, it has been determined that the absence of epidermal placode morphogenesis into a definitive scale ridge actually results in the establishment of a scale dermis which is incapable of inducing the outer and inner epidermal surfaces of scutate scales. Can the initial genetic defect in the scaleless anterior metatarsal epidermis be overcome by replacing the defective dermis with a normal scutate scale dermis, i.e., a dermis with scale ridges already present? Or, are the genes involved in the production of a β stratum regulated by events directly associated with morphogenesis of the epidermal placode? In the present study, we combined scaleless anterior metatarsal epidermis (stages 36 to 42) with normal scutate scale dermis (stage 40, 41, or 42) old enough to have acquired its scutate scale-inducing ability. After 7 days of growth as chorioallantoic membrane grafts, we observed grossly and histologically, typical scutate scales in these recombinant grafts. Electron microscopic and electrophoretic analyses have verified that these recombinant scales are true scutate scales. The scaleless mutation, known to be expressed initially by the anterior metatarsal epidermis, can be overcome by exposing this epidermis to appropriate inductive cues, i.e., cues that direct the differentiation of the outer and inner epidermal surfaces of the scutate scales and the production of specific structural proteins. We have determined that the time between stages 38 and 39 is the critical period during which the normal scutate scale dermis acquires these inductive abilities.  相似文献   

11.
To examine the role of development in the origin of evolutionary novelties, we investigated the developmental mechanisms involved in the formation of a complex morphological novelty-branched feathers. We demonstrate that the anterior-posterior expression polarity of Sonic hedgehog (Shh) and Bone morphogenetic protein 2 (Bmp2) in the primordia of feathers, avian scales, and alligator scales is conserved and phylogenetically primitive to archosaurian integumentary appendages. In feather development, derived patterns of Shh-Bmp2 signaling are associated with the development of evolutionarily novel feather structures. Longitudinal Shh-Bmp2 expression domains in the marginal plate epithelium between barb ridges provide a prepattern of the barbs and rachis. Thus, control of Shh-Bmp2 signaling is a fundamental component of the mechanism determining feather form (i.e., plumulaceous vs. pennaceous structure). We show that Shh signaling is necessary for the formation and proper differentiation of a barb ridge and that it is mediated by Bmp signaling. BMP signaling is necessary and sufficient to negatively regulate Shh expression within forming feather germs and this epistatic relationship is conserved in scale morphogenesis. Ectopic SHH and BMP2 signaling leads to opposing effects on proliferation and differentiation within the feather germ, suggesting that the integrative signaling between Shh and Bmp2 is a means to regulate controlled growth and differentiation of forming skin appendages. We conclude that Shh and Bmp signaling is necessary for the formation of barb ridges in feathers and that Shh and Bmp2 signaling constitutes a functionally conserved developmental signaling module in archosaur epidermal appendage development. We propose a model in which branched feather form evolved by repeated, evolutionary re-utilization of a Shh-Bmp2 signaling module in new developmental contexts. Feather animation Quicktime movies can be viewed at http://fallon.anatomy.wisc.edu/feather.html.  相似文献   

12.
The ability of the germinative cell population of scutate scale epidermis to continue to generate cells that undergo their appendage-specific differentiation (beta stratum formation), when associated with foreign dermis, was examined. Tissue recombination experiments were carried out which placed anterior metatarsal epidermis (scutate scale forming region) from normal 15-day chick embryos with either the anterior metatarsal dermis from 15-day scaleless (sc/sc) embryos or the dermis from the metatarsal footpad (reticulate scale forming region) of 15-day normal embryos. Neither of these dermal tissues are able to induce beta stratum formation in the simple ectodermal epithelium of the chorion, however, the footpad dermis develops an appendage-specific pattern during morphogenesis of the reticulate scales, while the sc/sc dermis does not. Morphological and immunohistological criteria were used to assess appendage-specific epidermal differentiation in these recombinants. The results show that the germinative cell population of the 15-day scutate scale epidermis is committed to generating suprabasal cells that follow their appendage-specific pathways of histogenesis and terminal differentiation. Of significance is the observation that the expression of this determined state occurred only when the epidermis differentiated in association with the footpad dermis, not when it was associated with the sc/sc dermis. The consistent positioning of the newly generated beta strata to the apical regions of individual reticulate-like appendages demonstrates that the dermal cues necessary for terminal epidermal differentiation are present in a reticulate scale pattern. The observation that beta stratum formation is completely missing in the determined scutate scale epidermis when associated with the sc/sc dermis adds to our understanding of the sc/sc defect. The present data support the conclusion of earlier studies that the anterior metatarsal dermis from 15-day sc/sc embryos lacks the ability to induce beta stratum formation in a foreign epithelium. In addition, these observations evoke the hypothesis that the sc/sc dermis either lacks the cues (generated during scutate and reticulate scale morphogenesis) necessary for terminal differentiation of the determined scutate scale epidermis or inhibits the generation of a beta stratum.  相似文献   

13.
Hair induction in the adult glabrous epidermis by the embryonic dermis was compared with that by the adult dermis. Recombinant skin, composed of the adult sole epidermis and the embryonic dermis containing dermal condensations (DC), was transplanted onto the back of nude mice. The epidermis of transplants formed hairs. Histology on the induction process demonstrated the formation of placode-like tissues, indicating that the transplant produces hair follicles through a mechanism similar to that underlying hair follicle development in the embryonic skin. An isolated adult rat sole skin piece, inserted with either an aggregate of cultured dermal papilla (DP) cells or an intact DP between its epidermis and dermis, was similarly transplanted. The transplant produced hair follicles. Histology showed that the epidermis in both cases surrounded the aggregates of DP cells. The epidermis never formed placode-like tissues. Thus, it was concluded that the adult epidermal cells recapitulate the embryonic process of hair follicle development when exposed to DC, whereas they get directly into the anagen of the hair cycle when exposed to DP. The expression pattern of Edar and Shh genes, and P-cadherin protein during the hair follicle development in the two types of transplants supported the above conclusion.  相似文献   

14.
Alibardi L. 2011. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. —Acta Zoologica (Stockholm) 92 : 187–200. The present morphological study describes the color of hatchling, juvenile, and adult crocodilian skin and the origin of its pigmentation. In situ hybridization and immunostaining indicate that crocodilian scales grow as an expansion of the proliferating epidermis of the hinge region that form thin lateral rings. In more central areas of growing scales, new epidermal layers contribute to increase the thickness of the stratum corneum. The dark pigmentation and color pattern derive from the different distribution of epidermal and dermal chromatophores. The more intensely pigmented stripes, irregular patches and dot‐like spots, especially numerous in dorsal scales, derive from the incorporation of the eumelanosomes of epidermal melanocytes in differentiating beta cells of the epidermis. Dermal melanophores, mainly localized in the loose upper part of the dermis, also contribute to the formation of the dark or gray background of crocodilian scales. The eumelanosomes of dermal melanophores determine the darkening of the skin pattern in association with the epidermal melanocytes. Iridophores are infrequent, while xantophores are present in the species analyzed with a sparse distribution in the superficial dermis among melanophores. The presence of xantophores and of the few iridophores in areas where epidermal melanocytes are absent appear to determine the brown or the light yellow‐orange background observed among the darker regions of crocodilian scales.  相似文献   

15.
The dermal influence on the epidermis during scale formation in reptiles is poorly known. Cells of the superficial dermis are not homogeneously distributed beneath the epidermis, but are instead connected to specific areas of the epidermis. Dermal cells are joined temporarily or cyclically through the basement membrane, with the reactive region of the epidermis forming specific regions of dermo-epidermal interactions. In these regions morphoregulatory molecules may be exchanged between the dermis and the connected epidermis. Possible changes in the localization of these regions in the skin may result in the production of different appendages, in accordance with the genetic makeup of the epidermis in each species. Regions of dermo-epidermal interactions seem to move their position during development. A hypothesis on the development and evolution of scales, hairs, and feathers from sarcopterigian fish to amniotes is presented, based on the different localization and extension of regions of dermo-epidermal interactions in the skin. It is hypothesized that, during phylogenesis, possible variations in the localization and extension of these regions, from the large scales of basic amniotes to those of sauropsid amniotes, may have originated scales with hard (beta)-keratin. In extant reptiles, extended regions of dermo-epidermal interaction form most of the expanse of outer scale surface. It is hypothesized that the reduction of large regions of dermo-epidermal interactions into small areas in the skin were the origin of dermal condensations. In mammals, small regions of dermo-epidermal interactions have invaginated, forming the dermal papilla with the associated hair matrix epidermis. In birds, small regions of dermo-epidermal interactions have reduced the original scale surface of archosaurian scales, forming the dermal papilla. The latter has invaginated in association with the collar epidermis from which feathers were produced.  相似文献   

16.
Morphogenesis of the anterior metatarsal skin (scutate scale region), from 9.5 to 12 days of development, results in the formation of orderly patterned scale ridges. It is after the initial formation of the Definitive Scale Ridge that the characteristic outer and inner epidermal surfaces differentiate. The hard, plate-like beta stratum, with its unique beta keratins, characterizes the epidermis of the outer surface, while the epidermis of the inner surface elaborates an alpha stratum. The anterior metatarsal region of the scaleless mutant does not undergo scale morphogenesis. Therefore, scale ridges do not form nor do the outer and inner epidermal surfaces with their characteristic beta and alpha strata. We have found that the extracellular matrix molecule, tenascin, first appears in the scutate scale dermis at 12 days of development when the scale ridge is established. Tenascin is found in the dermis only under the scale ridge and is not associated with the dermal-epidermal junction. Tenascin is not found in scaleless anterior metatarsal dermis at this time. As outgrowth of the Definitive Scale Ridge takes place, tenascin distribution correlates closely with the formation of the outer epidermal surface of each scale ridge. By 16 days of development tenascin is also found in close association with the dermal-epidermal junction. Tenascin does not appear in scaleless anterior metatarsal dermis until 16 days of development and then it is randomly and sparsely distributed at the dermal-epidermal junction. Tenascin's initial appearance and pattern of distribution in the scutate scale dermis and its abnormal expression in the scaleless dermis suggest that morphogenesis plays a significant role in regulation of its expression.  相似文献   

17.
The effect of hydrocortisone on the development of dorsal skin was analyzed in the chick embryo by (1) transmission electron microscopy, (2) indirect immunofluorescence histology of extracellular matrix components (collagen types I, III, and IV; fibronectin; and laminin), and (3) quantitative determination of collagen content and proline incorporation, between administration of the drug at 6 or 6.5 days and final retrieval of skin pieces at 11 days of incubation. Treatment caused the formation of featherless skin areas which exhibited an early maturation of the epidermis, a uniform distribution of interstitial collagen and rarefaction of fibronectin in the dermal extracellular matrix, and a significant increase of collagen content and proline incorporation in collagen noncollagen proteins, characterized by an increased hydroxyproline-to-proline ratio. The distribution of type IV collagen and of laminin was unchanged. The absence of feather formation in hydrocortisone-induced apteria is interpreted as resulting primarily from an early extinction of epidermal morphogenetic competence, and secondarily from modifications in the amount and distribution of extracellular matrix components in the dermis.  相似文献   

18.
We studied proline-rich divergent homeobox gene Hex/Prh expression in the dorsal skin of chick embryo during feather bud development. Hex mRNA expression was first observed in the dorsolateral ectoderm and mesenchyme at 5 days, then in the epithelium and the dermis of the dorsal skin before placode (primordium of feather bud) formation and then was restricted to the placode and the dermis under the placode. Afterward, Hex expression was seen in the epidermis and the dermis of the posterior region of short bud. In accordance with Hex mRNA expression in the placode, Hex protein was observed in the epidermis as well as in the dermis of the placode. Immunoelectron microscopic study indicated that the protein located both in the nuclei and cytoplasm of the epidermis and the dermis at the short bud stage. The Wnt signaling pathway plays an essential role in the early inductive events in hair (Wnt3a and 7a) and feather (Wnt7a) follicles. The pattern of Hex expression in the epidermis was similar to that of Wnt7a, while little, if any, expression of Wnt7a was detected in the dermis under the placode or the dermis of the short bud compared with that of Hex, suggesting that Hex plays an important role in the initiation of feather morphogenesis.  相似文献   

19.
Alibardi, L. 2011. Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians. —Acta Zoologica (Stockholm) 00 :1–11. The cytology and distribution of chromatophores responsible for skin pigmentation in chelonians is analyzed. Epidermal melanocytes are involved in the formation of dark spots or stripes in growing shelled and non‐shelled skin. Melanocytes rest in the basal layer of the epidermis and transfer melanosomes into keratinocytes during epidermal growth. Dermal melanophores and other chromatophores instead remain in the dermis and form the gray background of the skin. When dermal melanophores condense, they give origin to the dense spots or stripes in areas where no epidermal melanocytes are present. In the latter case, the epidermis and the corneous layer are transparent and reveal the dermal distribution of melanophores and other chromatophores underneath. As a result of this basic process of distribution of pigment cells, the dark areas visible in scales can have a double origin (epidermal and dermal) or a single origin (epidermal or dermal). Xanthophores, lipophores, and a cell containing both pterinosomes and lipid droplets are sparse in the loose dermis while iridophores are rarely seen in the skin of chelonians analyzed in the present study. Xanthophores and lipophores contribute to form the pale, yellow or oranges hues present among the dark areas of the skin in turtles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号