首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蚯蚓生物标记物在土壤生态风险评价中的应用   总被引:3,自引:0,他引:3  
史志明  徐莉  胡锋 《生态学报》2014,34(19):5369-5379
蚯蚓在土壤中行使了很多重要的生态功能,蚯蚓生物标记物常用作土壤污染风险评价研究。这篇综述的目的是探讨当前蚯蚓生物标记物研究是否可以应用到实际的土壤污染风险评价。1)讨论了蚯蚓生物标记物在土壤污染风险评价体系中的重要性,认为它是化学分析方法的有益补充,可以提供更为全面和客观的土壤污染信息;2)综述了相关研究中所使用的蚯蚓类型,土壤类型和生物标记物类型,及其它试验设计要素和最后结果的变异,认为目前蚯蚓生物标记物研究以实验室基础研究为主,筛选出了大量的生物标记物,一定程度上揭示了生物标记物的对各类典型污染物及其组合的应答机制;同时也认为,未来的蚯蚓生物标记物研究应该重点探讨将其应用到实际的土壤污染风险评价中的可行性及如何应用;3)目前不同研究之间从试验设计到结果都具有很大的变异,难以通过综合比较获得完全可靠的具有实践意义的结论和成果,因此,有必要通过建立标准化的蚯蚓生物标记物研究方法,推动生物标记物的研究工作;4)提出了蚯蚓生物标记物研究方法标准化的具体建议,推荐了蚯蚓生物标记物走向实际应用所需要解决的问题。  相似文献   

2.
Recent studies on earthworm invasion of North American soils report dramatic changes in soil structure, nutrient dynamics and plant communities in ecosystems historically free of earthworms. However, the direct and indirect impacts of earthworm invasions on animals have been largely ignored. This paper summarizes the current knowledge on the impact of earthworm invasion on other soil fauna, vertebrates as well as invertebrates.Earthworm invasions can have positive effects on the abundance of other soil invertebrates, but such effects are often small, transient, and restricted to habitats with harsh climates or a long history of earthworm co-occurrence with other soil invertebrates. Middens and burrows can increase soil heterogeneity and create microhabitats with a larger pore size, high microbial biomass, and microclimates that are attractive to micro- and mesofauna. Under harsh climatic conditions, the aggregates formed by earthworms may increase the stability of soil microclimates. Positive effects can also be seen when comminution and mucus secretion increase the palatability of unpalatable organic material for microorganisms which are the main food of most micro- and mesofaunal groups. For larger invertebrates or small vertebrates, invasive earthworms may become important prey, with the potential to increase resource availability. In the longer-term, the activity of invading earthworms can have a strong negative impact on indigenous faunal groups across multiple trophic levels. Evidence from field and laboratory studies indicates that the restructuring of soil layers, particularly the loss of organic horizons, physical disturbance to the soil, alteration of understory vegetation, and direct competition for food resources, lead directly and indirectly to significant declines in the abundance of soil micro- and mesofauna. Though studies of invasive earthworm impacts on the abundance of larger invertebrates or vertebrates are generally lacking, recent evidence suggests that reduced abundance of small soil fauna and alteration of soil microclimates may be contributing to declines in vertebrate fauna such as terrestrial salamanders. Preliminary evidence also suggests the potential for earthworm invasions to interact with other factors such as soil pollution, to negatively affect vertebrate populations.  相似文献   

3.
In many mid-Atlantic forests where both native and non-native earthworms exist, it is the non-native species that are the dominant component of the soil macrofauna. Few earthworm ecology studies, however, focus attention on these forest systems in order to determine the relative ecological roles and potential interactions of the native and non-native earthworms. In a series of field samplings and experimental manipulations we collected data on the effects of earthworms on below-and aboveground ecosystem processes. Earthworm abundance and the ecological processes measured were dynamic in space and time across the range of study sites. Leaf litter decay rates doubled at sites that had abundant non-native earthworms. Earthworms also altered the abundance of soil fungi, the activity of extracellular enzymes, soil respiration, and the growth of tree seedlings but the effects varied among sites depending on differences in land-use history and forest age. Red oak seedling growth was less at sites that had abundant earthworms but tulip poplar and red maple seedlings grew equally well with and without abundant earthworms. These preliminary results suggest that non-native earthworms have significant ecosystem effects, even in forests where native earthworms still occur. Land use history, however, plays an important role in determining what those effects will be, and these effects are likely to be dynamic, depending on the abundance of non-native earthworms.  相似文献   

4.
伴矿景天Sedum plumbizincicola是我国发现和报道的镉/锌(Cd/Zn)超积累植物,在土壤Cd污染修复方面已开展实际应用。由于超积累植物伴矿景天在不同类型土壤下的生长能力以及对镉锌的去除效果存在较大差异,因此需引入强化修复技术为植物修复提供辅助作用。作为大型土壤动物,蚯蚓对植物生长的促进作用已有较多研究,但其对伴矿景天生长和重金属吸取效率的影响则鲜有报道,为探究赤子爱胜蚓对不同类型土壤种植下的伴矿景天是否具有强化修复效应,以及不同类型土壤下的强化修复效应差异,设计以下盆栽试验。通过在常湿淋溶土(Perudic Luvisols)、水耕人为土(Stagnic Anthrosols)、湿润雏形土(Udic Cambisols)3种土壤上种植伴矿景天、引入赤子爱胜蚓Eisenia foetida,探究赤子爱胜蚓对伴矿景天生长及Cd/Zn吸收性的影响。选取Cd有效性较高、修复潜力较大的水耕人为土(Stagnic Anthrosols)进行第二季盆栽修复试验。第一季修复结果显示,在酸性的常湿淋溶土中,添加赤子爱胜蚓使伴矿景天地上部生物量较对照处理增加了106%,Cd和Zn吸收量分别提高了72.0%和36.0%,且蚯蚓结合伴矿景天的处理修复后土壤Cd有效性进一步降低,其余两种土壤仅添加蚯蚓无强化修复效应;第二季结果显示,同时添加秸秆和蚯蚓,可强化中性的水耕人为土上种植的伴矿景天生长,增大植物地上部生物量和Cd/Zn吸收量。结果表明,添加蚯蚓可增强伴矿景天在常湿淋溶土中的养分吸收,提高生物量,以此强化其修复效应。在水耕人为土中,外加秸秆可作为蚯蚓强化伴矿景天修复的配套技术。  相似文献   

5.
王笑  王帅  滕明姣  林小芬  吴迪  孙静  焦加国  刘满强  胡锋 《生态学报》2017,37(15):5146-5156
不同生态型蚯蚓的取食偏好和生境有所差异,因此蚯蚓的生态型差异可能关乎其对土壤性质的不同影响;有关不同生态型蚯蚓对土壤性质尤其是微生物学性质影响的研究有助于了解蚯蚓生态功能的作用机制。在野外调控试验的第4年采集土壤,研究了牛粪混施和表施处理下内层种威廉腔环蚓(Metaphire guillelmi)和表层种赤子爱胜蚓(Eisenia foetida)对设施菜地土壤微生物群落结构和主要理化性质的影响。结果表明,土壤微生物群落结构同时受到蚯蚓种类和牛粪施用方式的影响。牛粪表施时,两种蚯蚓均显著降低了菌根真菌、真菌生物量和原生动物生物量(P0.05);牛粪混施时,不同蚯蚓的影响有所差异,威廉腔环蚓明显增加了菌根真菌、真菌生物量和放线菌生物量,而赤子爱胜蚓的作用不明显。此外,两种蚯蚓均提高了土壤孔隙度、团聚体稳定性和土壤p H、矿质氮以及微生物生物量碳氮水平,但提高幅度取决于蚯蚓种类和牛粪施用方式。冗余分析表明蚯蚓影响下土壤微生物群落结构的变化与团聚体稳定性、p H、速效磷、矿质氮呈正相关,而与土壤容重呈负相关。  相似文献   

6.
蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响   总被引:4,自引:1,他引:3  
王丹丹  李辉信  胡锋  王霞 《生态学报》2007,27(4):1292-1299
以高沙土为供试土壤,加入Cu^2+以模拟成:0,100,200,400mg/kgCu^2+的Cu污染土壤,设置接种蚯蚓(E)、表施秸秆(M),同时加入蚯蚓和秸秆(ME)及不加蚯蚓和秸秆的对照(CK)4个处理,并种植黑麦草。研究蚯蚓、秸秆相互作用对黑麦草吸收、富集铜的影响。结果表明:加入秸秆显著提高了蚯蚓的生物量,一定程度上缓解了重金属对蚯蚓的毒害,同时蚯蚓显著提高了秸秆的分解率,较无蚯蚓对照提高了58.11%~77.32%。接种蚯蚓(E,ME)还提高了土壤有效态重金属(DTPA-Cu)含量,秸秆处理(M)则降低了土壤有效态重金属含量。研究还发现,E处理促进了黑麦草地上部生长,而M和ME处理均显著提高了黑麦草地下部的生物量。E和ME处理同时提高了植物地上部和地下部的Cu浓度及Cu吸收量,M处理则只对植物的地下部Cu浓度和Cu吸收量有显著促进作用。总体来看,E处理、M处理及ME处理分别使黑麦草地上部Cu富集系数提高了31.22%~121.07%.2.12%~61.28%和25.56%~132.64%。  相似文献   

7.
Recent studies document North American earthworm invasions and their profound effects on the structure of the soil profile, which is the habitat for soil microorganisms (mainly fungi and bacteria). Dramatic alterations made to these layers during earthworm invasion significantly change microbial community structure and therefore microbial activities such as C transformations. Understanding the impacts of earthworm invasion on the microbes themselves will give insight into earthworm effects on microbial activities. Bacterial and actinomycete communities in earthworm guts and casts have not been studied in environments recently invaded by earthworms. Earthworm invasion tended to decrease fungal species density and fungal species diversity and richness. The presence of earthworms decreased zygomycete species abundance probably due to disruption of fungal hyphae. Physical disruption of hyphae may also explain decreased mycorrhizal colonization rates, decreased mycorrhizal abundance and altered mycorrhizal morphology in the presence of earthworms. Mixing of organic layers into mineral soil during earthworm invasion tended to decrease microbial biomass in forest floor materials while increasing it in mineral soil. In newly invaded forest soils, microbial respiration and the metabolic quotient tended to decline. In forests where either the microbial community has had time to adapt to earthworm activities, or where the destruction of the forest floor is complete, as in invasions by the Asian Amynthas hawayanus, the presence of earthworms tends to increase the metabolic quotient indicating a shift to a smaller, more active microbial community.  相似文献   

8.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

9.
European and Asian earthworms have invaded much of North America with profound impacts to soils, plant communities, and animal populations. However, few studies have assessed local-scale correlates of earthworm distributions, and most invasive earthworm research has occurred in northern forests. Additionally, despite several studies showing facilitative relationships between invasive earthworms and invasive plants, no research has assessed a potential facilitative interaction between earthworms and woody plants encroaching into prairies. We conducted the first assessment of factors influencing local-scale distributions of native and non-native earthworms for the U.S. Great Plains in a tallgrass prairie-woodland mosaic experiencing eastern redcedar (Juniperus virginiana) encroachment. We documented both native and non-native earthworms, including non-native species from Eurasia (Aporrectodea spp.) and South America (Family Ocnerodrilidae). Native and non-native earthworm distributions were strongly correlated, yet local-scale predictors of distribution also differed between the groups. Native earthworms were more likely to occur near roads and in areas with moist soils. Contrary to expectation, we found no evidence that non-native earthworms occurred more frequently in areas with eastern redcedar-encroachment; instead, non-native earthworms were most likely to occur in tallgrass prairie. Our results suggest that, within prairies and woodlands of the Great Plains, native and non-native earthworms occur most frequently near roadways and in locations with moist soil. Because the few approaches for controlling invasive earthworms are only likely to be feasible on a small scale, findings from such local-scale studies are important for directing management to reduce earthworm impacts on biodiversity and ecosystem services.  相似文献   

10.
蚯蚓被喻为土壤中的“生态系统工程师”, 具有高度的多样性且在全世界都有分布, 被用作土壤健康的指示生物。蚯蚓具有极强的环境适应能力, 在不断适应的过程中促进了自身基因组的进化。本文对近年来蚯蚓全基因组以及线粒体基因组的研究进展进行了综述。蚯蚓全基因组的测序、拼装和分析为研究蚯蚓生态学、污染物对蚯蚓致毒的分子机制、免疫防御的分子机制、蚯蚓再生的分子机制等奠定基础。而线粒体基因组多应用于蚯蚓分子系统发育方面的研究, 目前已有多种蚯蚓通过线粒体基因组测序完成了物种的鉴定。本文建议今后重点开展以下几方面的研究: (1)针对现有的4种蚯蚓全基因组测序结果, 进一步进行比较基因组学、进化基因组学和功能基因组学的研究。(2)完善不同种蚯蚓的基因文库和表达序列标签。(3)建立线粒体基因组、全基因组与蚯蚓物种多样性的关联分析。  相似文献   

11.
随着蛋白质组学的发展和每年有大量环境污染物进入土壤环境中,污染胁迫模式动物的相关生物标志物受到日益关注。蚯蚓,作为土壤中最大的无脊椎动物,是研究和评价土壤生态污染良好的模式动物。研究蚯蚓的蛋白质组学,对于寻找环境生态污染相关生物标志物和阐明生态毒理学机制有着十分重要的现实意义。目前已知的污染胁迫下蚯蚓蛋白质组学研究,提供了几个特定污染物胁迫蚯蚓的蛋白表达谱。这些蛋白涉及许多生物学过程,例如信号传导、糖酵解、能量代谢、分子伴侣和转录调节,提示了相关污染物可能的生态毒理学机制,有望成为潜在的生物标志物,用于有毒污染物的监测,但其特异性需要进一步试验的验证。对蚯蚓受污染胁迫的蛋白质组表达谱及潜在生物标志物进行简要综述。  相似文献   

12.
蚯蚓在我国南方土壤修复中的应用   总被引:1,自引:0,他引:1  
蚯蚓作为生物量最大的土壤动物, 对土壤生态系统和环境质量影响深远。本研究介绍了华南地区主要应用的皮质远盲蚓(Amynthas corticis)、毛利远盲蚓(A. morrisi)、壮伟远盲蚓(A. robustus)、参状远盲蚓(A. aspergillum)、南美岸蚓(Pontoscolex corethrurus)和赤子爱胜蚓(Eisenia fetida)的生态特征, 阐述了它们与土壤pH值、酶活性、金属富集和有效性改变、孔道和微团聚体形成之间的紧密关系: (1)蚯蚓生存的土壤酸碱性范围较广(pH为3.8-7.9), 其存活率与土壤类型、有机质含量和成分、土壤污染程度和蚯蚓种类相关; (2)肠道内、蚓粪和蚓触圈的酶活性分别表征了蚯蚓取食喜好、土壤养分循环及微生物种群特征; (3)蚯蚓能够富集不同种类的金属并改变其有效性, 这些变化具有蚓种间、金属种类间和土壤类型之间的差异; (4)蚯蚓活动及其生产的蚓粪能改变土体结构、产生孔道、影响土壤团聚体数量、大小和分布。蚯蚓的上述作用使其在解决中国南方红壤酸化、土壤金属污染、茶园土壤养分不平衡、高速公路建设临时用地土壤损毁等方面具有广阔的应用前景。目前, 由于华南远盲蚓的生理特征差异研究较少, 远盲蚓繁育技术的缺乏一定程度上限制了这些蚯蚓在中型和大型尺度下应用技术的研究和推广。有必要进一步挖掘蚯蚓在土壤修复中的潜力, 进行蚯蚓主导的相关技术研发, 深入探讨其影响机制。  相似文献   

13.
Earthworms ingest large amounts of soil and therefore are continuously exposed to contaminants through their alimentary surfaces. Additionally, several studies have shown that earthworm skin is a significant route of contaminant uptake as well. In order to determine effects of dimethoate, a broad-spectrum organophosphorous insecticide, two ecologically different earthworm species were used - Eisenia andrei and Octolasion lacteum. Although several studies used soil organisms to investigate the effects of dimethoate, none of these studies included investigations of dimethoate effects on biochemical biomarkers in earthworms. Earthworms were exposed to 0.001, 0.005, 0.01, 0.5 and 1 μg/cm(2) of dimethoate for 24 h, and the activities of acetylcholinesterase, carboxylesterase, catalase and efflux pump were measured. In both earthworm species dimethoate caused significant inhibition of acetylcholinesterase and carboxylesterase activities, however in E. andrei an hormetic effect was evident. Efflux pump activity was inhibited only in E. andrei, and catalase activity was significantly inhibited in both earthworm species. Additionally, responses of earthworm acetylcholinesterase, carboxylesterase and catalase activity to dimethoate were examined through in vitro experiments. Comparison of responses between E. andrei and O. lacteum has shown significant differences, and E. andrei has proved to be less susceptible to dimethoate exposure.  相似文献   

14.
《农业工程》2021,41(6):512-523
Earthworms have been well reported to have a beneficial effect on soil microbes, soil microbial biomass (SMB), fungal community, soil structure, water retention and plant growth in different terrestrial ecosystems. However, the interactions between environmental stressors and various species of earthworms and the subsequent effect on soil microbes, organic matter, soil structure and plant growth are still uncertain. The purpose of this analysis was to test 1- the impact of environmental stressors on earthworm behaviour. 2- the effect of various earthworms on soil microbes, plant growth, soil structure and the carbon cycle. We noted that less fatal temperatures are generally unknown, but higher fatal temperatures range from 25 to 48 °C. Earthworms have a role to play, depending on the nature of organic residues, in both the formation and degradation of soil aggregates. Improvements in microbial biomass and plant growth have been established according to temperature, soil toxicity, soil type, earthworms abundance, organic residues types and field conditions. We observed that although the summer temperature in the arid area was approximately (°C 48), it was found that a particular type of earthworm (Namalycastis indica) was responsible for improving soil characteristics.While a great deal of analysis has been carried out on the role of earthworms within the soil ecology, such a review identifies important knowledge gaps, particularly in the determination of the impacts of earthworm species on the soil structure, microbial biomass and plant productivity, in particular since most papers focused on European species and overlooked the role of earthworms in the arid landscape. Further research is recommended to compare the impacts of different earthworms species on soil microbes and plant growth in various soil types, earthworm abundance, field conditions, organic residues locations, inorganic fertilizers, pesticides, fertile or non-fertile soils and diverse conditions of drought and moisture.  相似文献   

15.
We examine the patterns of expansion of exotic European earthworms in northeastern Europe and the western Great Lakes region of North America. These areas share many ecological, climatic and historical characteristics and are devoid of indigenous earthworm fauna due to Quaternary glaciations. These regions are being colonized by a similar suite of exotic lumbricid species and it is unlikely that this is the result of chance, but rather indicates that these species have particular characteristics making them successful invaders. The present macro-scale distributions of earthworm species in northern Russia show little connection to the pattern of the last glaciation. Rather, the primary factors that determine the current distributions of earthworm species include climatic conditions, the life history traits of different earthworm species, the suitability of habitat and intensity and patterns of human activity. In the western Great Lakes region of North America, there are three primary factors affecting current distributions of exotic earthworm species including the patterns of human activity and land use practices, the composition of particular source populations of earthworms associated with different vectors of transport and the soil and litter properties of habitats across the region. Disturbance of a habitat does not appear to be a prerequisite to the invasion and establishment of exotic earthworms. Analysis of the macro-scale distributions of Lumbricidae species in northeastern Europe may provide important insights into the potential of invasive European earthworm species to spread in North America, and identify potentially invasive species.  相似文献   

16.
蚯蚓调控土壤微生态缓解连作障碍的作用机制   总被引:1,自引:0,他引:1  
毕艳孟  孙振钧 《生物多样性》2018,26(10):1103-205
连作障碍不仅严重影响作物产量, 而且会导致土壤生物多样性下降、有益微生物减少及病原菌增加等一系列微生态失衡问题。土壤微生态失衡反作用于植物, 导致植物发生更严重的病害、减产等。作为土壤生态系统工程师, 蚯蚓的取食、掘洞和爬行等活动对土壤微生态具有重要的调控作用, 既可以改善土壤环境, 又可以强化土壤生物群落功能, 有望为缓解作物的连作障碍问题提供一条新途径。本文总结了土壤微生态与土壤功能维持及蚯蚓调控土壤生物作用的研究进展, 在此基础上, 结合蚯蚓对化感物质降解作用的研究, 分析了蚯蚓通过调控土壤微生态缓解作物连作障碍的微生物作用机制的三条途径: 直接调控微生物群落、通过改变化感物质组成以及通过调控土壤动物区系调控微生物群落。蚯蚓对微生物群落的调控可改善失衡的土壤根际微生态, 有效缓解作物连作障碍。  相似文献   

17.
Invasions of non‐indigenous species into natural communities are currently rated as one of the most important threats to biodiversity. Particularly exotic ecosystem engineers such as earthworms potentially have profound impacts on community assembly and functioning. We investigated the impact of invasion by the lumbricid earthworms into an aspen forest of the Canadian Rocky Mountains on soil organic matter, microorganisms and microarthropod communities. Building on the results of previous studies in this forest, we expected positive effects of Lumbricus terrestris middens and negative effects of Octolasion tyrtaeum on soil biota (increase and decrease in soil nutrient concentrations, microbial parameters and soil microarthropod density and diversity, respectively). Further, we expected that earthworm effects change with time. Combined results of previous and the present study suggest a wavelike colonization pattern for Dendrobaena octaedra and O. tyrtaeum and that indeed the impact of earthworms on soil biota changed with time, likely due to changes in earthworm density. Unexpectedly, L. terrestris middens neither affected soil abiotic nor soil biotic properties. By contrast and in contrast to our hypothesis, carbon and nitrogen concentration and C‐to‐N ratio in deeper soil layers increased in presence of O. tyrtaeum, thereby likely enhancing nutrient availability for soil microorganisms and microarthropods. Even though the density of this endogeic species was rather low, presence of O. tyrtaeum resulted in increased densities of a number of microarthropod taxa and increased microarthropod diversity. The results suggest that at low density, invasive ecosystem engineers, such as O. tyrtaeum, cause disturbances of intermediate strength thereby beneficially affecting soil microorganisms and most microarthropods. This contrasts earlier effects during the wavelike invasion of O. tyrtaeum into the aspen forest when densities of O. tyrtaeum were high resulting in generally detrimental effects on soil biota. The results emphasize the nonlinearity of earthworm effects on abiotic and biotic soil properties and call for further long‐term investigations.  相似文献   

18.
Plants respond to their environment through adaptations such as root proliferation in nutrient-rich patches. Through their burrows and casts production in soil, earthworms create heterogeneity which could lead to local root adaptations or systemic effects. To investigate the effect of earthworms on root system morphology and determine whether earthworm effect is local or systemic, we set up two independent split root experiments with rice or barley, (i) without earthworm (CC), (ii) with earthworms in both compartments (EE), and (iii) with earthworms in one single compartment (CE). Earthworms had an effect on belowground plant biomass. The relative length of thick roots decreased with an increasing abundance of earthworms. Some root diameter classes responded to earthworm number in a linear or curvilinear way, making simple conclusions difficult. We found no difference in root biomass or morphology between the two compartments of the split root system in the CE treatment, but a positive effect of earthworm biomass on root biomass, volume, surface area, and length at the whole plant level. Results supported a systemic effect dependent on earthworm abundance. Modification of nutrient mineralization, soil physical structure, and/or the concentration of signal molecules could all be responsible for this systemic effect.  相似文献   

19.
Earthworms and soil fertility   总被引:3,自引:0,他引:3  
Summary Earthworms redistribute organic materials within the soil, increase soil penetrability and, und certain conditions, influence ion transport in soils. Root distribution may be modified and microbial activity increased by their burrowing and feeding activities. Earthworms influence the supply of nutrients in several ways. Not only is earthworm tissue and cast material enriched in certain nutrients, relative to the soil matrix, but ingestion of organic material increases the rate of cycling. Certain farm-management practices, such as cultuvation and the use of acidic fertilizers, reduce the ability of earthworm to improve plant growth. Where other inorganic fertilizers increase the growth of plants, an increase in earthworm numbers can be expected because of the increased food supply. Lime, in particular, and possibly drainage also increase earthworm activity. Further research is required on the physical and biological effects of earthworms on nutrient supply, so that suitable management practices can be developed to optimise the beneficial effects of earthworms on soil fertility.Introductory lecture  相似文献   

20.
Improving current understanding of the factors that control soil carbon (C) dynamics in forest ecosystems remains an important topic of research as it plays an integral role in the fertility of forest soils and the global C cycle. Invasive earthworms have the potential to alter soil C dynamics, though mechanisms and effects remain poorly understood. To investigate potential effects of invasive earthworms on forest C, the forest floor, mineral soil, fine root biomass, litterfall and microbial litter decay rates, and total soil respiration (TSR) over a full year were measured at an invaded and uninvaded deciduous forest site in southern Ontario. The uninvaded site was approximately 300 m from the invaded site and a distinct invasion front between sites was present. Along the invasion front, the biomass of the forest floor was negatively correlated with earthworm abundance and biomass. There was no significant difference between litterfall, microbial litter decay, and TSR between the invaded and uninvaded sites, but fine root biomass was approximately 30% lower at the invaded site. There was no significant difference in total soil C pools (0–30 cm) between the invaded and uninvaded sites. Despite profound impacts on forest floor soil C pools, earthworm invasion does not significantly increase TSR, most likely because increased heterotrophic respiration associated with earthworms is largely offset by a decrease in autotrophic respiration caused by lower fine root biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号