首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Gibberellins A1, A8, A20 and A29 were identified by capillary gas chromatography-mass spectrometry in the pods and seeds from 5-d-old pollinated ovaries of pea (Pisum sativum cv. Alaska). These gibberellins were also identified in 4-d-old non-developing, parthenocarpic and pollinated ovaries. The level of gibberellin A1 within these ovary types was correlated with pod size. Gibberellin A1, applied to emasculated ovaries cultured in vitro, was three to five times more active than gibberellin A20. Using pollinated ovary explants cultured in vitro, the effects of inhibitors of gibberellin biosynthesis on pod growth and seed development were examined. The inhibitors retarded pod growth during the first 7 d after anthesis, and this inhibition was reversed by simultaneous application of gibberellin A3. In contrast, the inhibitors, when supplied to 4-d-old pollinated ovaries for 16 d, had little effect on seed fresh weight although they reduced the levels of endogenous gibberellins A20 and A29 in the enlarging seeds to almost zero. Paclobutrazol, which was one of the inhibitors used, is xylem-mobile and it efficiently reduced the level of seed gibberellins without being taken up into the seed. In intact fruits the pod may therefore be a source of precursors for gibberellin biosynthesis in the seed. Overall, the results indicate that gibberellin A1, present in parthenocarpic and pollinated fruits early in development, regulates pod growth. In contrast the high levels of gibberellins A20 and A29, which accumulate during seed enlargement, appear to be unnecessary for normal seed development or for subsequent germination.Abbreviations GA(a) gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PFK perfluorokerosene - PVP polyvinylpyrrolidone  相似文献   

2.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

3.
The response of unpollinated ovary explants ofPisum sativum L. cv. Alaska No. 7 to several plant growth regulators and nutrients has been studied. Explants consisted of a segment of stem and an emasculated flower with or without the adjacent leaf. They were made on the day equivalent to anthesis and were cultured in a liquid medium. Growth regulators were applied either in the solution or directly to the ovaries. Giberellic acid (GA3) in the presence of sucrose, but not indole-3-acetic acid or N6-(Δ2-isopentenyl)-adenine (2iP), induced fruit set and development of parthenocarpic fruits, the final length of these being a function of the intensity of the GA3 treatment. The capacity of ovaries to respond fully to GA3 was not lost after incubation of explants in water or 50 mM sucrose for 1 day and was similar in explants made between the day of anthesis and 3 days later. Limited growth was obtained with 100 mM sucrose alone but this effect was counteracted by 2′-isopropyl-4′-(trimethyl ammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (AMO-1618). This inhibitor was ineffective when GA3 was applied to the ovary. The development of the fruit was proportional to the length of the segment of stem up to 5 cm. The presence of the leaf in the explant enhanced the development of the fruit. These results indicate that a gibberellin is necessary for setting and development of fruits from cultured ovaries and that this effect depends on an appropriate source of nutrients. The course of development of parthenocarpic fruits on explants was similar to that of seeded fruits on the intact plant. The cultured pea ovary systemoffers convenient means to investigate the role of gibberellins and nutrients in fruit set and development.  相似文献   

4.
In addition to the previously-reported gibberellins: GA1; GA8, GA20 and GA29 (García-Martínez et al., 1987, Planta 170, 130–137), GA3 and GA19 were identified by combined gas chromatography-mass spectrometry in pods and ovules of 4-d-old pollinated pea (Pisum sativum cv. Alaska) ovaries. Pods contained additionally GA17, GA81 (2-hydroxy GA20) and GA29-catabolite. The concentrations of GA1, GA3, GA8, GA19, GA20 and GA29 were higher in the ovules than in the pod, although, with the exception of GA3, the total content of these GAs in the pod exceeded that in the seeds. About 80% of the GA3 content of the ovary was present in the seeds. The concentrations of GA19 and GA20 in pollinated ovaries remained fairly constant for the first 12 ds after an thesis, after which they increased sharply. In contrast, GA1 and GA3 concentrations were maximal at 7 d and 4–6 d, respectively, after anthesis, at about the time of maximum pod growth rate, and declined thereafter. Emasculated ovaries at anthesis contained GA8, GA19 and GA20 at concentrations comparable with pollinated fruit, but they decreased rapidly. Gibberellins a1 and A3 were present in only trace amounts in emasculated ovaries at any stage. Parthenocarpic fruit, produced by decapitating plants immediately above an emasculated flower, or by treating such flowers with 2,4-dichlorophenoxyacetic acid or GA7, contained GA19 and GA20 at similar concentrations to seeded fruit, but very low amounts of GA1 and GA3 Thus, it appears that the presence of fertilised ovules is necessary for the synthesis of these last two GAs. Mature leaves and leaf diffusates contained GA1, GA8, GA19 and GA20 as determined by combined gas chromatography-mass spectrometry using selected ion monitoring. This provides further evidence that vegetative tissues are a possible alternative source of GAs for fruit-set, particularly in decapitated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FW fresh weight - GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - KRI Kovats retention index - m/z mass to charge ratio We thank Mr M.J. Lewis for qualitative GC-MS analyses and Ms M.V. Cuthbert (LARS), R. Martinez Pardo and T. Sabater (IATA) for technical assistance. We are also grateful to Professor B.O. Phinney, University of California, Los Angeles, for gifts of [17-13C]GA8 and -GA29 and to Mr Paul Gaskin, University of Bristol, for the mass spectrum of GA29-catabolite and for a sample of GA81 The work in Spain was supported by Dirección General de Investigación Cientifica y Técnica (grant PB87-0402 to J.L.G.-M.). We also acknowledge the British Council and Ministerio de Educacion y Ciencia for travel grants through Accion Integrada Hispano-Britanica 56/142 (J.L.G.-M. and P.H.).  相似文献   

5.
The induction of parthenocarpic fruit set was investigated using the apple cvs. Golden Delicious and Jonagold. The gibberellins GA3, GA4, GA5 and GA7 and the synthetic phenylurea-type cytokinin CPPU (N-(2-chloro-4-pyridyl)-N-phenylurea), were applied alone and in combination to unpollinated flowers at the end of petal fall. Gibberellins induced only a marginal final set of parthenocarpic fruits. CPPU sprays were more effective, particularly in the first year. When applied in combination, CPPU and gibberellins had a positive synergistic effect on parthenocarpic fruit set and fruit size, but a negative effect on flower induction the next year. After CPPU + GA sprays, percent fruit set was similar, or greater, compared to natural pollinated trees. The parthenocarpic fruits induced by CPPU + GA had an increased length to diameter ratio. CPPU stimulated, and GA4 and GA7 reduced, the russeting of the parthenocarpic fruits. The internal quality of the fruits was hardly affected, but Ca-deficiency symptoms occurred more frequently in parthenocarpic fruits.  相似文献   

6.
John L. Stoddart 《Planta》1984,161(5):432-438
Growth parameters were determined for tall (rht3) and dwarf (Rht3) seedlings of wheat (Triticum aestivum L.). Plant statures and leaf length were reduced by 50% in dwarfs but root and shoot dry weights were less affected. Leaves of dwarf seedlings had shorter epidermal cells and the numbers of cells per rank in talls and dwarfs matched the observed relationships in overall length. Talls grew at twice the rate of dwarfs (2.3 compared with 1.2 mm h-1). [3H]Gibberellin A1 ([3H]GA1) was fed to seedlings via the third leaf and metabolism was followed over 12 h. Immature leaves of tall seedlings transferred radioactivity rapidly to compounds co-chromatographing with [3H]gibberellin A8 ([3H]GA8) and a conjugate of [3H]GA8, whereas leaves of dwarf seedlings metabolised [3H]GA1 more slowly. Roots of both genotypes produced [3H]GA8-like material at similar rates. Isotopic dilution studies indicated a reduced 2-hydroxylation capacity in dwarfs, but parallel estimates of the endogenous GA pool size, obtained by radioimmunoassay, indicated a 12–15 times higher level of GA in the dwarf immature leaves. Dwarfing by the Rht3 gene does not appear to operate through enhanced, or abnormal metabolism of active gibberellins and the act of GA metabolism does not bear an obligate relationship to the growth response.Abbreviations GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

7.
The fate of [14C] gibberellin A3 and [3H] gibberellin A1 was examined in senescing fruit of Shamouti orange (Citrus sinensis L. Osbeck) and tomato (Lycopersicon esculentum Mill.). Gibberellin A3 was highly persistent in Citrus peel (t 1/2=18 days) and to a lesser degree in tomato (t 1/2=5.5 days). Ethylene and ethephon caused a slight enhancement of gibberellin A3 metabolism in Citrus and tomato fruit, respectively. Gibberellin A1 was metabolized by Citrus peel at a relatively high rate (t 1/2 < 24 h) and ethylene slightly reduced this rate. It is concluded that the ethylene-induced enhancement of senescence does not involve major effects on the deactivation of applied gibberellins.Abbreviations GA3 gibberellin A3 - GA1 gibberellin A1  相似文献   

8.
Cell-free systems were prepared from germinating seed and seedlings of Phaseolus coccineus. Gibberellin A4 (GA4)-metabolising activity was detected in vitro using preparations from roots, shoots and cotyledons of germinating seed, but only up to 24 h after imbibition. Cell-free preparations from cotyledons converted [3H]GA4 to GA1, GA34, GA4-glucosyl ester and a putative O-glucoside of GA34, and, in addition converted [3H]GA1 to GA8. Preparations from embryo tissues contained 2-hydroxylase activity, converting [3H]GA4 to GA34 and [3H]GA1 to GA8.The presence of GA-metabolising enzymes was also indicated by in-vivo feeds of [3H]GA4 to epicotyls of intact 4-d-old seedlings, which resulted in the accumulation of GA1, GA8, GA3-3-O-glucoside, GA4-glucosyl ester, GA8-2-O-glucoside and a putative O-glucoside of GA34. Gibberellin A1 was the first metabolite detected, 15 min after application of [3H]GA4, but after 24 h most of the label was associated with GA8-2-O-glucoside. Over 90% of the recovered radioactivity was found in the shoot. Within the shoot, movement was preferentially acropetal, and was not dependent upon metabolism of the applied [3H]GA4.Abbreviations DEAE diethylaminoethyl - GAn gibberellin An - GPC gel permeation chromatography - HPLC-RC high performance liquid chromatography-radio counting - S-1 1000·g supernatant - UDP uridine 5-diphosphate  相似文献   

9.
The response of unpollinated ovary explants ofPisum sativum L. cv. Alaska No. 7 to several plant growth regulators and nutrients has been studied. Explants consisted of a segment of stem and an emasculated flower with or without the adjacent leaf. They were made on the day equivalent to anthesis and were cultured in a liquid medium. Growth regulators were applied either in the solution or directly to the ovaries. Giberellic acid (GA3) in the presence of sucrose, but not indole-3-acetic acid or N6-(2-isopentenyl)-adenine (2iP), induced fruit set and development of parthenocarpic fruits, the final length of these being a function of the intensity of the GA3 treatment. The capacity of ovaries to respond fully to GA3 was not lost after incubation of explants in water or 50 mM sucrose for 1 day and was similar in explants made between the day of anthesis and 3 days later. Limited growth was obtained with 100 mM sucrose alone but this effect was counteracted by 2-isopropyl-4-(trimethyl ammonium chloride)-5-methylphenyl piperidine-1-carboxylate (AMO-1618). This inhibitor was ineffective when GA3 was applied to the ovary. The development of the fruit was proportional to the length of the segment of stem up to 5 cm. The presence of the leaf in the explant enhanced the development of the fruit. These results indicate that a gibberellin is necessary for setting and development of fruits from cultured ovaries and that this effect depends on an appropriate source of nutrients. The course of development of parthenocarpic fruits on explants was similar to that of seeded fruits on the intact plant. The cultured pea ovary systemoffers convenient means to investigate the role of gibberellins and nutrients in fruit set and development.  相似文献   

10.
The persistence of gibberellin A3 on plant surfaces was examined using fruit of Marsh seedless grapefruit (Citrus paradisi Macf.) and an inert glass model system. 14C-gibberellin A3 was applied to surfaces in aqueous treatment solutions or in waxing solutions. Dried-out treatment residues were removed by washing and analyzed for total and GA3-like radioactivity. Gibberellin A3 persisted without significant loss for at least 7 d in aqueous treatment solutions (pH 4.0 or 6.2) but was less persistent in the pH 10.4 waxing solution (t1/2=7 d).Loss of total peel surface radioactivity was fast during the first 3 days, slowing down afterwards. After 14 days 73% of the initial radioactivity could still be recovered from fruit peel surface and 70% of the recovered radioactivity was still in the form of gibberellin A3. Gibberellin A3 was somewhat more persistent in residues from pH 4 than pH 7 treatment solutions. Light had a slight enhancing effect on gibberellin A3 decomposition on fruit peel under growth chamber conditions. After 12 d at 100% relative humidity, 88% of the radioactivity on glass surfaces was still in the form of gibberellin A3, as against 45% at a relative humidity of 50%. Simulated field conditions, combining daily fluctuations in light, temperature and relative humidity, markedly enhanced gibberellin A3 decomposition on glass surfaces (t1/2=2 d). Gibberellin A3 was very persistent (90% after 9 d) in the waxing residues on fruit peel surface.Abbreviations GA3 gibberellin A3 - RH relative humidity  相似文献   

11.
Separation and quantitation of polyamines from unpollinated pea (Pisum sativum L.) ovaries and young fruits induced by application of gibberellic acid to unpollinated ovaries showed, in both cases, a decrease in putrescine and spermidine levels between anthesis and 4 d later. By contrast, spermine levels increased prior to the onset of senescence of the unpollinated ovaries (3 d post anthesis) and decreased during fruit development. Low levels of putrescine, spermidine and spermine were also observed in young fruits obtained by self-pollination and by treatment of unpollinated ovaries with 2,4-dichlorophenoxyacetic acid. In-vitro culture of ovary explants in a medium containing spermine showed that a reduction of the growth of gibberellic acid-treated unpollinated ovaries was associated with a rise in the level of spermine in the fruits. The results obtained indicate that changes in spermine levels are involved in the control of ovary senescence and of fruit set and development.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophen-oxyacetic acid - GA3 gibberellic acid - HPLC high-performance liquid chromatography  相似文献   

12.
Gibberellins and phytochrome regulation of stem elongation in pea   总被引:6,自引:0,他引:6  
In garden pea (Pisum sativum L.) neither etiolation nor the phytochrome B (phyB)-response mutation lv substantially alters the level of the major active endogenous gibberellin, GA1 in the apical portion of young seedlings. The phyB-controlled responses to continuous red light and end-of-day far-red light are retained even in a GA-overproducing mutant (sln). Comparison of the effects of the lv mutation and GA1 application on seedling development shows important differences in rate of node development, cell extension and division, and leaf development. These results suggest that in pea the control of stem elongation by light in general and phyB in particular is not mediated by changes in GA1 content. Instead, the increased elongation of dark-grown and lv plants appears to result from increased responsiveness of the plant to its endogenous levels of GA1. Three GA1-deficient mutants, na, ls and le have been used to investigate these changes in responsiveness, and study of these and the double mutants na lv, ls lv and le lv has demonstrated that the relative magnitude of the change in responsiveness is dependent on GA1 level. The difference in pleiotropic effects of GA1 application and the lv mutation suggest that light and GA1 interact late in their respective transduction pathways. A model for the relationship between light, GA1 level and elongation in pea is presented and discussed.Abbreviations B blue light - cv cultivar - EOD-FR end-of-day far-red light - FR far-red light - GAn Gibberellin An - GC-SIM gas chromatography-selected ion monitoring - HIR high irradiance response - W white light We thank Prof. L.N. Mander for provision of deuterated internal standards, Peter Bobbi, Noel Davies, Omar Hasan, and Katherine McPherson for technical assistance, Stephen Swain for discussion and provision of GA-level data, and the Australian Research Council for financial assistance. J.L.W. is in receipt of an Australian Postgraduate Research scholarship.  相似文献   

13.
W. Hartung  F. Steigerwald 《Planta》1977,134(3):295-299
Abscisic acid (ABA) in lanolin, applied to the internode of decapitated runner bean plants enhances the outgrowth of lateral buds. The optimum concentration of the paste is 10-5 M. The effect of ABA is counteracted by indoleacetic acid (IAA) but not by gibberellic acid (GA3). There is no effect when ABA is applied to the apical bud or lateral buds of intact plants. However, 13.2 ng given to the lateral buds of decapitated plants stimulate their growth, whereas higher concentrations are inhibitory. Consequently, ABA enhances growth of lateral buds directly, but only when apical dominance is already weakened. The growth of the decapitated 2nd internode was not affected by ABA. Radioactivity from [2-14C] ABA, applied to nonelongating 2nd internode stumps of decapitated runner bean plants moves to the lateral buds, whereas [1-14C]IAA-and [3H]GA1-translocation is much weaker. ABA transport is inhibited if IAA or [3H]GA1 is applied simultaneously. In elongating internodes [14C]ABA is almost completely immobile. [14C]IAA-and [3H]GA1-translocation is not affected by ABA. The amount of radioactivity from labelled ABA, translocated to the lateral buds, is highest during the early stages of bud outgrowth.Abbreviations ABA 2,4-cis, trans-(+)-abscisic acid - GA gibberellic acid - IAA indoleacetic acid - p.l. plain lanolin  相似文献   

14.
Gibberellin (GA) metabolism from GA12-aldehyde was studied in cell-free systems from 2-d-old germinating embryos of barley. [14C]- or [17-2H2]Gibberellins were used as substrates and all products were identified by combined gas chromatography-mass spectrometry. Stepwise analysis demonstrated the conversion of GA12-aldehyde via the 13-deoxy pathway to GA51 and via the 13-hydroxylation pathway to GA29, GA1 and GA8. In addition, GA3 was formed from GA20 via GA5. We conclude that the embryo is capable of producing gibberellins that can induce -amylase production in the aleurone layer. There was no evidence for 12- or 18-hydroxylation and GA4 was neither synthesised nor metabolised by the system. All metabolically obtained GAs, with the exception of GA3, were also found as endogenous components of the cell-free system in spite of ammonium-sulfate precipitation and desalting steps.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography We thank Mrs. G. Bodtke and Mrs. B. Schattenberg for preparing the barley embryos and the Deutsche Forschungsgemeinschaft for supporting this work.  相似文献   

15.
The development of sensitive and specific solid-phase enzyme immunoassays for gibberellic acid and gibberellins A4 and A7 is reported. The use of antisera of high apparent affinity (Ka over 1010 l mol-1) in conjunction with alkaline phosphatase-labeled gibberellins allows, with minimum procedural effort, the quantitative determination of sub-picogram amounts of these gibberellins. The assays reported here are applicable to most gibberellins and can be set up with 1–1.5 mg of starting material. They represent the most sensitive methods for gibberellin determination known.Abbreviations GA gibberellin - GA3 gibberellic acid - TLC thin-layer-chromatography  相似文献   

16.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

17.
The levels of endogenous gibberellin A1 (GA1), GA3, GA4, GA9 and a cellulase-hydrolysable GA9-conjugate in needles and shoot stems of Sitka spruce [Picea sitchensis (Bong.) Carr.] grafts with different coning or flowering histories were estimated by combined gas chromatography-mass spectrometry selected ion monitoring using deuterated GA3, GA4 and GA9 as internal standards. The samples were taken at the approximate time of the start of flower-bud differentiation, i.e. when the shoots had elongated approx. 95% of the final length. The needles of the good-flowering clones contained 11–12 ng per g fresh weight (FW) and 15–28 ng· (g FW) –1 of GA9-conjugate and GA9, respectively. The shoot stems of the same material contained no detectable amounts of GA9-conjugate and 11–15 ng-(g FW)–1 of GA9. The amounts of GA9-conjugate and GA9 were apparently lower in the poor-flowering clones, the needles containing 4–9 ng-(g FW)–1 and 7–17 ng·(g FW)–1, respectively. Also in this material the shoot stems contained no detectable amounts of GA9-conjugate. The amounts of GA4 were very small in both materials, ranging from 1–1.6 ng-(g FW)–1. The good-flowering clones contained no detectable amounts of the more polar gibberellins, GA1 and GA3. The poor-flowering clones, on the other hand, contained high levels of GA15 17–19ng·(gFW)–1 in the needles and 10–13 ng·(g FW) –1 in the shoot stems, and also smaller amounts of GA3, 2–3 ng·(g FW)–1 in the needles and approx. 1 ng·(g FW)–1 in the shoot stems. The results demonstrate differences in GA-metabolism between the poor- and the good-flowering clones. The higher amounts of GA9-conjugate and GA9 might indicate a higher capacity for synthesizing GA4 in the good-flowering material. This synthesis does not, however, result in a build-up of the GA4-pool, maybe because of a high rate of turnover. Gibberellin A4 was apparently neither hydroxylated to GA1 nor converted to GA3 in the goodflowering material, as was the case in the poor-flowering material. This might indicate that gibberellin metabolism in the poor-flowering material is directed towards GA1 and GA3, GAs preferentially used in vegetative growth.Abbreviations FW fresh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

18.
The role of gibberellins (GAs) in the regulation of shoot elongation is well established but the phytohormonal control of dry-matter production is poorly understood. In the present study, shoot elongation and dry-matter production were resolved by growing Brassica napus L. seedlings under five light intensities (photon flux densities) ranging from 25 to 500 μmol m−2 s−1. Under low light, plants were tall but produced little dry weight; as light intensity was increased, plants were progressively shorter but had increasing dry weights. Endogenous GAs in stems of 16- and 17-d-old plants were analyzed by gas chromatography-selected ion monitoring with [2H2] internal standards. The contents of GAs increased dramatically with decreasing light intensity: GA1, GA3, GA8 and GA20 were 62, 15, 16 and 32 times higher, respectively, under the lowest versus highest light intensities. Gibberellin A19 was not measured at 25 μmol m−2 s−1 but was 9␣times greater in the 75 compared to 500 μmol m−2 s−1 treatment. Shoot and hypocotyl lengths were closely positively correlated with (log) GA concentration (for example: r 2 = 0.93 for GA1 and hypocotyl length) but shoot dry matter was negatively correlated with GA concentration. The application of gibberellic acid (GA3) produced elongation of plants grown under high light, indication that their low level of endogenous GA was limiting shoot elongation. Although endogenous GA20 showed the greatest influence of light treatment, metabolism of [3H]GA20 and of [3H]GA1 was only slightly influenced by light intensity, suggesting that neither 2β- nor 3β-hydroxylation were points of metabolic regulation. The results of this study indicate that GAs control shoot elongation but are not directly involved in the regulation of shoot dry weight in Brassica. The study also suggests a role of GAs in photomorphogenesis, serving as an intermediate between light condition and shoot elongation response. Received: 18 June 1998 / Accepted: 29 July 1998  相似文献   

19.
Valerie A. Smith 《Planta》1993,191(2):158-165
The physiological and biochemical consequences of treating Le (tall) and le (dwarf) pea seedlings with varying quantities of the gibberellins [3H]GA20 and GA1 have been investigated. Although the percentage uptake of these compounds from the site of application on the 3 stipules was low and most of the applied GA remained unmetabolised in situ, the quantitative relationship between GA translocation and GA dosage was found to be linear for GA1 but saturating for GA20. The movement of the GAs and their subsequently produced metabolites was mainly acropetal. They accumulated in greatest quantity in the apical extremities of the shoot. Overall, the extent to which GA20 was metabolished in le seedlings was considerably less than in Le pea seedlings. Although all le tissues contained significantly less [3H]GA1 than their Le counterparts, phenotypic effects of the le mutation were apparent only on internode and tendril development. Increased tissue growth, consequent upon GA treatment, was also apparent only in the internodes and tendrils of le plants. For internodes, GA1 content determined the mid-logarithmic-phase growth rate and, consequently, final length. For tendrils, GA20 rather than GA1 may be the primary stimulatory agent.Abbreviations GA gibberellin - HPLC high-performance liquid chromatography - 1–6 consecutive developmental numbering system for plant tissues/organs as shown in Fig. 1 The author gratefully acknowledges financial support from Imperial Chemical Industries, Plant Protection, Jealott's Hill, Bracknell, Berks., UK and the Science and Engineering Research Council.  相似文献   

20.
Gibberellin stabilizes microtubules in onion leaf sheath cells   总被引:5,自引:0,他引:5  
T. Mita  H. Shibaoka 《Protoplasma》1984,119(1-2):100-109
Summary Colchicine and cremart (O-ethyl O-(3-methyl-6-nitrophenyl) N-sec-butylphosphorothioamidate) disrupt microtubules in leaf sheath cells of onion plants (Allium cepa L. cv. Senshu-Chuko) and cause cell swelling to make the basal parts of the plants bulbous. Gibberellin A3(GA3) protects microtubules from disruption by colchicine and cremart and suppresses the swelling caused by them. GA3 also protects microtubules from disruption by low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号