首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments (0 and 4 g N m−2 year−1) on the growth of four Sphagnum species from three geographically interspersed regions: S. fuscum, S. balticum (northern and central Sweden), S. magellanicum and S. cuspidatum (southern Sweden). We studied the growth and cover change in four combinations of these Sphagnum species during two growing seasons. Sphagnum height increment and production were affected negatively by high temperature and high N addition. However, the northern species were more affected by temperature, while the southern species were more affected by N addition. High temperature depressed the cover of the ‘wet’ species, S. balticum and S. cuspidatum. Nitrogen concentrations increased with high N addition. N:P and N:K ratios indicated P-limited growth in all treatments and co-limitation of P and K in the high N treatments. In the second year of the experiment, several containers suffered from a severe fungal infection, particularly affecting the ‘wet’ species and the high N treatment. Our findings suggest that global change can have negative consequences for the production of Sphagnum species in bogs, with important implications for the carbon sequestration in these ecosystems.  相似文献   

2.
Bu ZJ  Rydin H  Chen X 《Oecologia》2011,166(2):555-563
Ecosystem processes of northern peatlands are largely governed by the vitality and species composition in the bryophyte layer, and may be affected by global warming and eutrophication. In a factorial experiment in northeast China, we tested the effects of raised levels of nitrogen (0, 1 and 2 g m−2 year−1), phosphorus (0, 0.1 and 0.2 g m−2 year−1) and temperature (ambient and +3°C) on Polytrichum strictum, Sphagnum magellanicum and S. palustre, to see if the effects could be altered by inter-specific interactions. In all species, growth declined with nitrogen addition and increased with phosphorus addition, but only P. strictum responded to raised temperature with increased production of side-shoots (branching). In Sphagnum, growth and branching changed in the same direction, but in Polytrichum, the two responses were uncoupled: with nitrogen addition there was a decrease in growth (smaller than in Sphagnum) but an increase in branching; with phosphorus addition growth increased but branching was unaffected. There were no two-way interactions among the P, N and T treatments. With increasing temperature, our results indicate that S. palustre should decrease relative to P. strictum (Polytrichum increased its branching and had a negative neighbor effect on S. palustre). With a slight increase in phosphorus availability, the increase in length growth and production of side-shoots in P. strictum and S. magellanicum may give them a competitive superiority over S. palustre. The negative response in Sphagnum to nitrogen could favor the expansion of vascular plants, but P. strictum may endure thanks to its increased branching.  相似文献   

3.
适量的烟气能够促进有性繁殖体萌发,但迄今尚无辅助烟气处理探究孢子生活力快速检测方法的研究报道。该文选择毛缘泥炭藓(Sphagnum fimbriatum)、中位泥炭藓(S.magellanicum)和粗叶泥炭藓(S.squarrosum)作为材料,分别使用亚甲基蓝染色法、四唑(TTC)染色法、碘-碘化钾(I2-KI)染色法和红墨水染色法对泥炭藓孢子进行染色,并比照营养液、烟溶液+营养液培养的孢子萌发试验,对比研究泥炭地苔藓植物孢子生活力快速检测的最佳方法。结果表明:亚甲基蓝染色法的染色效果最为明显,TTC和I2-KI均未能使泥炭藓孢子着色,孢子对红墨水虽有着色反应但不清晰;与营养液培养相比,添加烟溶液使毛缘泥炭藓、中位泥炭藓和粗叶泥炭藓孢子萌发率分别提高5%、5%和18%;使用亚甲基蓝染色的孢子染色率与经烟溶液处理过的孢子萌发率最为接近。综上认为,亚甲基蓝染色法能快速检测泥炭藓孢子的生活力。  相似文献   

4.
The response of the aquatic plant Sparganium emersum to different sediment nutrient levels was studied in three mesocosm experiments. The aim was to assess plant growth parameters and nutrient accumulation in the plant tissue under conditions relevant for habitats with sediments affected by anthropogenic nutrient enrichment. The experimental treatments were produced by fertilisation of the rooting medium (washed river sand) with differing doses of either NPK mineral fertiliser or digested sludge from solid pig slurry waste. Growth inhibition by high nutrient levels was not observed in any treatment (highest nutrient concentrations in the sediment with mineral fertiliser: N 250 mg kg−1, P 50 mg kg−1; organic fertiliser: N 6300 mg kg−1, P 1800 mg kg−1), which confirms the tolerance of S. emersum to high nutrient loads. The sediment nutrient concentration was best reflected in shoot dry mass. Nutrient contents in plant tissues were similar for most nutrient concentrations in the rooting media; only N increased significantly with N levels in the sediment in belowground parts. Nutrient standing stocks in plants, however, generally corresponded to the nutrient supply, and reached highest values (max. N 3.7 g m−2, P 1.2 g m−2) in the richest treatments with organic fertiliser. The capability of S. emersum to use nutrients from high sediment concentrations and in organically polluted environments recommends this species for use in water quality management including tertiary wastewater treatment.  相似文献   

5.
《Journal of bryology》2013,35(2):109-117
Abstract

In the second half of the 20th century, frequency and diversity of brown mosses strongly declined in Dutch fens while species of Sphagnum and Polytrichum increased markedly. We hypothesized that high ammonium (NH4+) concentrations in Dutch precipitation have promoted these species changes. To test this hypothesis, we examined the effects of varying concentrations (1–1000 μM) of NH4+ on a brown moss (Calliergonella cuspidata), two species of Sphagnum (S. contortum and S. squarrosum) and Polytrichum commune in a hydroponic experiment. A second goal was to identify possible interspecific differences in the mechanisms responsible for NH4+ detoxification. Dry matter production and tissue cation concentrations indicated decreasing sensitivity to NH4+ in the order C. cuspidata>S. contortum>S. squarrosum and P. commune. In S. squarrosum and P. commune, the highest NH4+ treatments induced strong increases in tissue nitrogen (N) and amino acid concentrations. Sphagnum contortum showed a similar, but less marked response. In contrast, C. cuspidata showed a negative relationship between external NH4+ concentrations and both tissue N and amino acid concentrations (except arginine). Our findings support the hypothesis that the present rates of NH4+ deposition in The Netherlands are detrimental to brown mosses, but not to fast-growing Sphagnum and Polytrichum species. The efficiency of the NH4+ assimilation apparatus, producing N-rich amino acids, probably plays a key role in determining sensitivity to increased NH4+ deposition.  相似文献   

6.
  • Peatland degradation through drainage and peat extraction have detrimental environmental and societal consequences. Rewetting is an option to restore lost ecosystem functions, such as carbon storage, biodiversity and nutrient sequestration. Peat mosses (Sphagnum) are the most important peat-forming species in bogs. Most Sphagnum species occur in nutrient-poor habitats; however, high growth rates have been reported in artificial nutrient-rich conditions with optimal water supply.
  • Here, we demonstrate the differences in nutrient dynamics of 12 Sphagnum species during their establishment in a 1-year field experiment at a Sphagnum paludiculture area in Germany. The 12 species are categorized into three groups (slower-, medium- and fast-growing). Establishment of peat mosses is facilitated by constant supply of nutrient-rich, low pH, and low alkalinity surface water.
  • Our study shows that slower-growing species (S. papillosum, S. magellancium, S. fuscum, S. rubellum, S. austinii; often forming hummocks) displayed signs of nutrient imbalance. These species accumulated higher amounts of N, P, K and Ca in their capitula, and had an elevated stem N:K quotient (>3). Additionally, this group sequestered less C and K per m2 than the fast and medium-growing species (S. denticulatum, S. fallax, S. riparium, S. fimbriatum, S. squarrosum, S. palustre, S. centrale). Lower lawn thickness may have amplified negative effects of flooding in the slower-growing species.
  • We conclude that nutrient dynamics and carbon/nutrient sequestration rates are species-specific. For bog restoration, generating ecosystem services or choosing suitable donor material for Sphagnum paludiculture, it is crucial to consider their compatibility with prevailing environmental conditions.
  相似文献   

7.
  • Sphagnum biomass is a promising material that could be used as a substitute for peat in growing media and can be sustainably produced by converting existing drainage‐based peatland agriculture into wet, climate‐friendly agriculture (paludiculture). Our study focuses on yield maximization of Sphagnum as a crop.
  • We tested the effects of three water level regimes and of phosphorus or potassium fertilization on the growth of four Sphagnum species (S. papillosum, S. palustre, S. fimbriatum, S. fallax). To simulate field conditions in Central and Western Europe we carried out a glasshouse experiment under nitrogen‐saturated conditions.
  • A constant high water table (remaining at 2 cm below capitulum during growth) led to highest productivity for all tested species. Water table fluctuations between 2 and 9 cm below capitulum during growth and a water level 2 cm below capitulum at the start but falling relatively during plant growth led to significantly lower productivity. Fertilization had no effect on Sphagnum growth under conditions with high atmospheric deposition such as in NW Germany (38 kg N, 0.3 kg P, 7.6 kg K·ha?1·year?1).
  • Large‐scale maximization of Sphagnum yields requires precise water management, with water tables just below the capitula and rising with Sphagnum growth. The nutrient load in large areas of Central and Western Europe from atmospheric deposition and irrigation water is high but, with an optimal water supply, does not hamper Sphagnum growth, at least not of regional provenances of Sphagnum.
  相似文献   

8.
Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NPmax), maximum efficiency of photosystem II [variable fluorescence (F v)/maximum fluorescence yield (F m)] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NPmax did not differ between control (0.2 g N m−2 year−1) and high N (3.0 g N m−2 year−1), but was higher in the mid N treatment (1.5 g N m−2 year−1). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F v/F m did not differ between N treatments. Increased temperature (+3.6°C) had a small negative effect on N concentration, but had no significant effect on NPmax or F v/F m. Addition of 2 g S m−2 year−1 showed a weak negative effect on NPmax and F v/F m. Our results suggest a unimodal response of NPmax to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g−1. In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.  相似文献   

9.
Climate warming is likely to increase nutrient mineralization rates in bog ecosystems which may change the plant species composition. We examined the competitive relationships between two graminoid species, Eriophorum vaginatum and Rhynchospora alba, and two ericoid species, Calluna vulgaris and Vaccinium oxycoccus, at different nutrient supply rates. In a greenhouse, the plants were grown in monocultures and mixtures at four nutrient treatments: control, high N, high P, and high N + P. The results show that the ericoids responded more strongly to the nutrient treatments than the graminoids. The dwarf shrubs showed higher growth rates and reduced root:shoot ratio at high N + P supply. When grown in mixture the ericoids increased their growth, while graminoids decreased in biomass or showed signs of nutrient limitation compared to their monoculture plants. This suggests that under increased nutrient availability, bogs are more likely to turn into dwarf shrub dominated ecosystems and not grassland.  相似文献   

10.
The distribution of invasive and native species in wetlands is determined by hydrological conditions; whereas conditions such as water depth fluctuations, variations in the nutrient concentrations are expected to affect the growth and physiological traits of plants. For the assessment of such effects, we conduct greenhouse experiment with three factors; 1) water depth of 5 cm and 15 cm (static and fluctuated); 2) three levels of nutrient concentrations (i) full‐strength Hoagland solution (N1), (ii) ¼‐strength Hoagland solution (N2), and (iii) 1/8‐strength Hoagland solution (N3); and 3) species, invasive Wedelia trilobata (L.) and its congener, native Wedelia chinensis (Osbeck.) under mono and mixed culture. Water depth of 5 cm combined with any of the nutrient treatments significantly restrained the photosynthesis, intracellular CO2 concentration and leaf chlorophyll of both W. trilobata and W. chinensis. Increase in the water depth to 15 cm with low‐nutrient treatment N3 did not sustain the physiological traits of W. chinensis under mono and mixed planting. A great loss was noted in the growth of W. chinensis at 15 cm static and fluctuated water depth with low‐nutrient treatment (N3) and under mixed culture. In addition, water depth fluctuations with both low‐ and high‐nutrient treatments significantly affected the root‐shoot ratio, relative growth rate, and interspecific interaction among these two species. W. trilobata benefited more from competitive interaction index (CII) under fluctuated water depth at 15 cm with high nutrients, and the value of CII was clearly positive. Therefore, higher competitive ability may contribute to the invasiveness of W. trilobata in wetlands.  相似文献   

11.
Here we investigate the effect of 4 years simulated atmospheric deposition of ammonium (NH4) and nitrate (NO3), applied alone or in combination with phosphorus and potassium (PK), on the surface phosphatase activities and nutrient acquisition behaviour of two species of moss (Sphagnum capillifolium and Hypnum jutlandicum) from an ombrotrophic peatland. Phosphatase activity was significantly enhanced by both the NH4 and NO3 treatments, particularly for Sphagnum, but the activity decreased when exposed to additions of PK. Regression analysis revealed that phosphatase activity on Sphagnum was positively related with tissue N and negatively related to tissue P concentrations. For Hypnum, a negative relationship between shoot P concentration and phosphatase activity was observed. Using a 32P tracer, mosses removed from plots receiving PK in combination with NH4 maintained their affinity for increased phosphorus uptake. These findings suggest that enhanced nutrient supply, even at modest doses, significantly alter the nutrient recycling behaviour of bryophytes.  相似文献   

12.
Vegetation and soil indicators of nutrient condition were evaluated in 30 wetlands, 10 each in 3 Nutrient Ecoregions (NE) (VI-Corn Belt and Northern Great Plains, VII-Mostly Glaciated Dairy Region, IX-Temperate Forested Plains and Hills) of the Midwestern United States (U.S.) to identify robust indicators for assessment of wetland nutrient enrichment and eutrophication. Nutrient condition was characterized by surface water inorganic N (NH4-N, NO3-N) and P (PO4-P) concentrations measured seasonally for 1 year, plant available and total soil N and P, and aboveground biomass, leaf N and P and species composition of emergent vegetation measured at the end of the growing season. Aboveground biomass, nutrient uptake and species composition were positively related to surface water NH4-N (N) but not to PO4-P or NO3-N. Aboveground biomass and biomass of aggressive species, Typha spp. plus Phalaris arundinacea, increased asymptotically with surface water N whereas leaf P, senesced leaf N and senesced leaf P increased linearly with N. And, species richness declined with surface water N. Soil total P was positively related to surface water PO4-P but it was the only soil indicator related to wetland nutrient condition. Individual regressions for each NE generally were superior to a single regression for all NEs. In NE VI (Corn Belt), few indicators were related to surface water N because of the high degree of anthropogenic disturbance (85% of the landscape is cleared) as compared to NEs VII and IX (24–53% cleared). Of the indicators evaluated, stem height (r2 = 0.42 for all NEs, r2 = 0.56 for NE VII + IX) and percent biomass of aggressive species, Typha spp. plus Phalaris, (r2 = 0.46 for all NEs, r2 = 0.54 for NE VII + IX), were the best predictors of wetland nutrient enrichment. Vegetation-based indicators are a promising tool for assessment of wetland nutrient condition but they may not be effective in NEs where landscape disturbance is intense and widespread.  相似文献   

13.
The purpose of this study was to consider the relative importance of several habitat variables in explaining the patterns in the structure of macroinvertebrate assemblages in open-water habitats, in relatively intact bogs and fens, which should inform conservation strategies. It was hypothesised that variables relating to the size of the water body would differentiate the communities and that some species would be unique to certain conditions. The macroinvertebrate communities from pools >100 m2, 10.1–100 m2 and Sphagnum hollows were characterised using sweep sampling for eight intact peatland sites across four bog types, and related to habitat variables including pool size, Sphagnum cover and hydrochemistry. Results showed community composition and structure differed significantly between deep, permanent pools and shallow, drought-sensitive Sphagnum hollows, with larger invertebrates, such as Odonates and Dytiscinae, rarely found in the hollows. Sphagnum cover accounted for a substantial amount of the variation in community composition. An examination of life-history strategies found species dependent on predictable conditions for juvenile development to be more abundant in pools. In contrast, taxa that could delay juvenile development until conditions were favourable were more abundant in Sphagnum hollows. These results highlight the importance of habitat heterogeneity in maintaining macroinvertebrate diversity in peatlands.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) can improve plant nutrient acquisition, either by directly supplying nutrients to plants or by promoting soil organic matter mineralization, thereby affecting interspecific plant relationships in natural communities. We examined the mechanism by which the addition of P affects interspecific interactions between a C4 grass (Bothriochloa ischaemum, a dominant species in natural grasslands) and a C3 legume (Lespedeza davurica, a subordinate species in natural grasslands) via AMF and plant growth, by continuous 13C and 15N labelling, combined with soil enzyme analyses. The results of 15N labelling revealed that P addition affected the shoot uptake of N via AMF by Bischaemum and Ldavurica differently. Specifically, the addition of P significantly increased the shoot uptake of N via AMF by Bischaemum but significantly decreased that by Ldavurica. Interspecific plant interactions via AMF significantly facilitated the plant N uptake via AMF by B. ischaemum but significantly inhibited that by L. davurica under P-limited soil conditions, whereas the opposite effect was observed in the case of excess P. This was consistent with the impact of interspecific plant interaction via AMF on arbuscular mycorrhizal (AM) benefit for plant growth. Our data indicate that the capability of plant N uptake via AMF is an important mechanism that influences interspecific relationships between C4 grasses and C3 legumes. Moreover, the effect of AMF on the activities of the soil enzymes responsible for N and P mineralization substantially contributed to the consequence of interspecific plant interaction via AMF for plant growth.  相似文献   

15.
Sphagnum magellanicum has been viewed as being a predominantly circumpolar species in the northern hemisphere, but it occurs in the southern hemisphere and was originally described from the southern parts of Chile. It is an ecologically important species in mire ecosystems and has been extensively used as a model to study processes of growth, carbon sequestration and peat decomposition. Molecular and experimental studies have, however, revealed genetic structure within S. magellanicum, and morphological differences associated with these genetic groups. Here we describe Sphagnum divinum in Sphagnum subgenus Sphagnum (Sphagnaceae, Bryophyta) as a new species, based on molecular and morphological evidence. Sphagnum medium is reinstated as a distinct species and is epitypified. Consequently, a new species concept of S. magellanicum is presented including an epitypification. Important morphological characters to separate these three species in the field and under the microscope are presented. Ecology and distribution differ among the species; S. divinium has a wide habitat range including mire margin, forested peatlands and moist heaths, and a circumpolar distribution around the northern hemisphere. Sphagnum medium seems to be more restricted to ombrotrophic mire expanse habitats and shows an amphi-Atlantic distribution in the northern hemisphere. Sphagnum magellanicum has a very broad ecological niche in peatlands and is found in most mire habitats in Tierra del Fuego on the southern tip of South America.  相似文献   

16.
Alteration of the global nitrogen (N) cycle because of human‐enhanced N fixation is a major concern particularly for those ecosystems that are nutrient poor by nature. Because Sphagnum‐dominated mires are exclusively fed by wet and dry atmospheric deposition, they are assumed to be very sensitive to increased atmospheric N input. We assessed the consequences of increased atmospheric N deposition on total N concentration, N retention ability, and δ15N isotopic signature of Sphagnum plants collected in 16 ombrotrophic mires across 11 European countries. The mires spanned a gradient of atmospheric N deposition from about 0.1 up to about 2 g m?2 yr?1. Mean N concentration in Sphagnum capitula was about 6 mg g?1 in less polluted mires and about 13 mg g?1 in highly N‐polluted mires. The relative difference in N concentration between capitulum and stem decreased with increasing atmospheric N deposition, suggesting a possible metabolic mechanism that reduces excessive N accumulation in the capitulum. Sphagnum plants showed lower rates of N absorption under increasing atmospheric N deposition, indicating N saturation in Sphagnum tissues. The latter probably is related to a shift from N‐limited conditions to limitation by other nutrients. The capacity of the Sphagnum layer to filter atmospheric N deposition decreased exponentially along the depositional gradient resulting in enrichment of the mire pore water with inorganic N forms (i.e., NO3?+NH4+). Sphagnum plants had δ15N signatures ranging from about ?8‰ to about ?3‰. The isotopic signatures were rather related to the ratio of reduced to oxidized N forms in atmospheric deposition than to total amount of atmospheric N deposition, indicating that δ15N signature of Sphagnum plants can be used as an integrated measure of δ15N signature of atmospheric precipitation. Indeed, mires located in areas characterized by greater emissions of NH3 (i.e., mainly affected by agricultural activities) had Sphagnum plants with a lower δ15N signature compared with mires located in areas dominated by NOx emissions (i.e., mainly affected by industrial activities).  相似文献   

17.
In restored peatlands, recovery of carbon assimilation by peat‐forming plants is a prerequisite for the recovery of ecosystem functioning. Restoration by rewetting may affect moss photosynthesis and respiration directly and/or through species successional turnover. To quantify the importance of the direct effects and the effects mediated by species change in boreal spruce swamp forests, we used a dual approach: (i) we measured successional changes in moss communities at 36 sites (nine undrained, nine drained, 18 rewetted) and (ii) photosynthetic properties of the dominant Sphagnum and feather mosses at nine of these sites (three undrained, three drained, three rewetted). Drainage and rewetting affected moss carbon assimilation mainly through species successional turnover. The species differed along a light‐adaptation gradient, which separated shade‐adapted feather mosses from Sphagnum mosses and Sphagnum girgensohnii from other Sphagna, and a productivity and moisture gradient, which separated Sphagnum riparium and Sphagnum girgensohnii from the less productive S. angustifolium, S. magellanicum and S. russowii. Undrained and drained sites harbored conservative, low‐production species: hummock‐Sphagna and feather mosses, respectively. Ditch creation and rewetting produced niches for species with opportunistic strategies and high carbon assimilation. The direct effects also caused higher photosynthetic productivity in ditches and in rewetted sites than in undrained and drained main sites.  相似文献   

18.
Nutrient distribution in a Swedish tree species experiment   总被引:2,自引:0,他引:2  
The influence of four tree species on the distribution of nutrients between different compartments of the ecosystem was examined. In a randomized block (n=3) experiment in south-western Sweden, Ca, Mg and K were determined as exchangeable amounts in the mineral soil and as total amounts in the O+A1 horizons (topsoil) and in the aboveground tree biomass. N contents were determined in all compartments as well as P contents of the aboveground tree biomass and the topsoil. The four tree species planted were: silver fir [Abies alba Mill.] (AA), grand fir [Abies grandis Lindl.] (AG), Norway spruce [Picea abies L. Karst.] (PA) and Japanese larch [Larix leptolepis (Sieb. och Zucc.) Endl.] (LL). At the age of 35–36 years, the total stemwood production of the most productive species, AG, was estimated at 471 m3 ha−1. In relation to AG, LL had produced 80%, PA 73% and AA 37%. The system totals [aboveground tree biomass total + topsoil total + exchangeable (Ca, Mg, K) or total (N) in the mineral soil] of Ca, K and N did not differ significantly at the 5% level between the investigated species. For Mg, the system total in LL was significantly higher than for the other species. There was an indication that LL and AA contained higher amounts of Ca, Mg, K and N in the topsoil but less in the biomass than did AG and PA (partly significant). In the mineral soil, there were no significant differences in the exchangeable pools of Ca and K, nor in the total amounts of N. The biomass nutrient concentrations generally decreased in the order: AA > PA > AG > LL. At stem or whole-tree harvest, the Ca export per biomass unit would more than double in the case of PA compared to LL. LL also contained less N in the biomass than the other species. However, the N content in the biomass did not differ between the most (AG) and the least (AA) productive species, although the production of dry weight biomass (standing + harvested) of AG had been twice that of AA. It is concluded that the nutrient budget of a managed forest may vary considerably depending on the choice of tree species.  相似文献   

19.
Spatially separated ecosystems are often linked by nutrient fluxes. Nutrient inputs may be transferred by physical vectors (i.e., wind and water) or by biotic vectors. In this study, we examine the role of green turtles (Chelonia mydas) as biotic transporters of nutrients from marine to terrestrial ecosystems, where they deposit eggs. We compare low and high nest density sites at Tortuguero, Costa Rica, the largest green turtle rookery in the western hemisphere. Four plant species (Costus woodsonii, Hibiscus pernanbucensis, Hymenocallis littoralis, Ipomoea pes‐caprae) were analyzed at both nest density sites for 15N, total carbon, nitrogen, and phosphorus, and vegetation cover. Sand was analyzed for 15N and total nitrogen. Vegetation at high nest density sites had higher total nitrogen, which was correlated with higher δ15N values, suggesting nutrient input from a marine source. The dominant plant species changed between low and high nest density sites, indicating that turtle‐derived nutrients may alter the plant community composition. The trend in δ15N values of sand was similar, although less pronounced than that of the vegetation. Sand may be a poor integrator of nutrient input due to low nutrient adsorption and high rate of leaching. Sea turtles have previously been shown to deposit considerable amounts of nutrients and energy on nesting beaches. In this study, we estimate annual nitrogen and phosphorus contributions at Tortuguero are 507 and 45 kg/km, respectively, and we demonstrate that beach vegetation likely assimilates a portion of these marine‐derived nutrients.  相似文献   

20.
Heathland management is an important tool with which to modify ecosystem impacts caused by atmospheric nutrient deposition. Since changes in nutrient availability as a result of management measures affect the outcomes of heathland succession and species competition, studies on this issue are important from both a nature conservation and management point of view. This study reports the effects of prescribed burning on nutrient availability in dry heathland soils and the nutrient content of the two competing heathland species Calluna vulgaris and Deschampsia flexuosa, with particular reference to N and P. We hypothesise that winter prescribed burning leads to additional N availability, which enhances the importance of P in the context of nutrient limitation in heathland ecosystems. In the nature reserve “Lueneburg Heath” (NW Germany) we examined the availability of nutrients in the humus horizons and in the leachate as well as the relevant C:element ratios in Calluna and Deschampsia before and after a burning experiment. Our results show that prescribed burning resulted in drastically increased NH4+ availability in the O-horizon. We observed only short-term effects (for NO3, PO43−, Mg) and insignificant effects on the availability of other nutrients (K, Ca). As a consequence of an increased nutrient availability in the humus horizons and a limited nutrient uptake by plants after burning, leaching increased significantly for N, Ca, K, and Mg after burning treatment. No significant changes were found in the foliar C:N ratios for either species after prescribed burning, although Deschampsia showed an increased deficiency for all the other nutrients, particularly for P, as expressed by increased foliar C:P and N:P ratios. By contrast, the nutrient content of Calluna did not change significantly, suggesting that prescribed burning favours the competitive capacity of Calluna as against Deschampsia. We assume that water shortage as a result of changes in the microclimate was mainly responsible for the deterioration of the nutrient content of Deschampsia. This gives Calluna a competitive advantage, enabling it to out-compete Deschampsia on burned heathlands, with respect to the key factor P-limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号