首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the known inhibitors of iron uptake, n-butylamine and NH4Cl, was examined at the molecular level to more precisely define the mechanisms by which these lysosomotropic agents block iron uptake by rabbit reticulocytes. Utilizing a rapid pulse-chase technique to follow the handling of a cohort of 59Fe, 125I-transferrin bound to rabbit reticulocytes, both amines were observed to have no effect on the cell-mediated release of 59Fe from internalized transferrin. The results indicated, however, that both agents acted to 1) retard the internalization of transferrin bound to transferrin receptors on the plasma membrane of reticulocytes, 2) retard the externalization of internalized transferrin, and 3) block the transport into the cytosol of iron released from transferrin.  相似文献   

2.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37 degrees C but nearly all that taken up 4 degrees C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells. These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37 degrees C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

3.
Mechanism of transferrin iron uptake by rat reticulocytes was studied using 59Fe- and 125I-labelled rat transferrin. Whereas more than 80% of the reticulocyte-bound 59Fe was located in the cytoplasmic fraction, only 25–30% of 125I-labelled transferrin was found inside the cells. As shown by the presence of acetylcholine esterase, 10–15% of the cytoplasmic 125I-labelled transferrin might have been derived from the contamination of this fraction by the plasma membrane fragments. Electron microscopic autoradiography indicated 26% of the cell-bound 125I-labelled transferrin to be inside the reticulocytes. Both the electron microscopic and biochemical studies showed that the rat reticulocytes endocytosed their plasma membrane independently of transferrin. Sepharose-linked transferrin was found to be capable of delivering 59Fe to the reticulocytes. Our results suggest that penetration of the cell membrane by transferrin is not necessary for the delivery of iron and that, although it might make a contribution to the cellular iron uptake, internalization of transferrin reflects endocytotic activity of the reticulocyte cell membrane.  相似文献   

4.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37°C but nearly all that taken up 4°C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells.These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37°C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

5.
59Fe uptake by rabbit reticulocytes from human transferrin-bound iron was studied by using transferrin solutions (35, 50, 65, 80 and 100% saturated with iron) whose only common characteristic was their content of diferric transferrin. During the early incubation period, 59Fe uptake from each preparation by reticulocytes was identical despite wide variations in amounts of total transferrin, total iron, monoferric transferrin and apotransferrin in solution. During the later phase of incubation, rate of uptake declined and was proportional to each solution's monoferric transferrin content. Uptake was also studied in a comparative experiment which used two identical, partially saturated transferrin preparations, one uniformly 59Fe-labelled and the other tracer-labelled with [59Fe]diferric transferrin. In both experiments, iron uptake by reticulocytes corresponded to utilization of a ferric ion from diferric transferrin before utilization of iron from monoferric transferrin.  相似文献   

6.
Melanotransferrin (MTf) or melanoma tumor antigen p97 is a membrane-bound transferrin (Tf) homologue that binds iron (Fe). This protein is also found as a soluble form in the plasma (sMTf) and was suggested to be an Alzheimer's disease marker. In addition, sMTf has been recently suggested to cross the blood-brain barrier (BBB) and accumulate in the brain of the mouse following intravenous infusion. Considering the importance of this observation to the physiology and pathophysiology of the BBB and the function of sMTf in vivo, we investigated the uptake and distribution of 59Fe-125I-sMTf and compared it to 59Fe-125I-Tf that were injected intravenously in rats. Studies were also performed to measure 59Fe and 125I-protein uptake by reticulocytes using these radiolabelled proteins. The results showed that sMTf was rapidly catabolized, mainly in the liver and to a lesser extent by the kidneys. The 59Fe was largely retained by these organs but the 125I was released into the plasma. Only a small amount of 125I-sMTf or its bound 59Fe was taken up by the brain, less than that from 59Fe-125I-Tf. There was much less 59Fe uptake by erythropoietic organs (spleen and femurs) from 59Fe-sMTf than from 59Fe-Tf, and no evidence of receptor-mediated uptake of sMTf was obtained using reticulocytes. It is concluded that compared to Tf, sMTf plays little or no role in Fe supply to the brain and erythropoietic tissue. However, a small amount of sMTf was taken up from the plasma by the brain and a far greater amount by the liver.  相似文献   

7.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

8.
Preparative isoelectric focusing of human diferric transferrin preparations yielded seven bands with different isoelectric points, due to differences in sialic acid content. Incubation of rat reticulocytes at 37 and 4 degrees C with differic preparations of four of these transferrin forms labeled with 59Fe and 125I show no differences in membrane binding of iron and transferrin and in iron uptake. Hence it is concluded that the carbohydrate chains are not directly involved in the process of iron delivery to reticulocytes.  相似文献   

9.
Several aspects of iron metabolism were studied in cultured Friend erythroleukemia cells before and after induction of hemoglobin synthesis by dimethyl sulfoxide. The maximal rate of iron uptake from 59Fe-labeled transferrin, 1.5 X 10(6) atoms of Fe/cell per 30 min in uninduced cells, increased to 3 X 10(6) atoms/cell after 5 days of induction. The increase in iron uptake was not accompanied by a proportional increase in the number of transferrin receptors detected by 125I-labeled transferrin binding, suggesting a more efficient iron uptake by transferrin receptors in induced cells, with the rate of about 26 iron atoms per receptor per hour, compared to 15 atoms in uninduced cells. In agreement with this conclusion are results of the study of cellular 125I or 59Fe labeled transferrin kinetics. In the induced cells transferrin endocytosis and release proceeded with identical rates and all the endocytosed iron was retained inside the cell. On the other hand, transferrin release by uninduced cells was significantly slower and a substantial part of internalized 59Fe was released. On the basis of these results, different efficiency of iron release from internalized transferrin, accompanied by changes in cellular transferrin kinetics, is proposed as one of the factors determining the rate of iron uptake by developing erythroid cells.  相似文献   

10.
The uptake of transferrin and iron by the rat liver was studied after intravenous injection or perfusion in vitro with diferric rat transferrin labelled with 125I and 59Fe. It was shown by subcellular fractionation on sucrose density gradients that 125I-transferrin was predominantly associated with a low-density membrane fraction, of similar density to the Golgi-membrane marker galactosyltransferase. Electron-microscope autoradiography demonstrated that most of the 125I-transferrin was located in hepatocytes. The 59Fe had a bimodal distribution, with a larger peak at a similar low density to that of labelled transferrin and a smaller peak at higher density coincident with the mitochondrial enzyme succinate dehydrogenase. Approx. 50% of the 59Fe in the low-density peak was precipitated with anti-(rat ferritin) serum. Uptake of transferrin into the low-density fraction was rapid, reaching a maximal level after 5-10 min. When livers were perfused with various concentrations of transferrin the total uptakes of both iron and transferrin and incorporation into their subcellular fractions were curvilinear, increasing with transferrin concentrations up to at least 10 microM. Analysis of the transferrin-uptake data indicated the presence of specific transferrin receptors with an association constant of approx. 5 X 10(6) M-1, with some non-specific binding. Neither rat nor bovine serum albumin was taken up into the low-density fractions of the liver. Chase experiments with the perfused liver showed that most of the 125I-transferrin was rapidly released from the liver, predominantly in an undegraded form, as indicated by precipitation with trichloroacetic acid. Approx. 40% of the 59Fe was also released. It is concluded that the uptake of transferrin-bound iron by the liver of the rat results from endocytosis by hepatocytes of the iron-transferrin complex into low-density vesicles followed by release of iron from the transferrin and recycling of the transferrin to the extracellular medium. The iron is rapidly incorporated into mitochondria and cytosolic ferritin.  相似文献   

11.
The mechanism of iron uptake from several iron-containing compounds by transferrin-depleted rabbit reticulocytes and mouse spleen erythroid cells was investigated. Iron complexes of DL-penicillamine, citrate and six different aroyl hydrazones may be utilized by immature erythroid cells for hemoglobin synthesis, although less efficiently than iron from transferrin. HTF-14, a monoclonal antibody against human transferrin, reacts with rabbit transferrin and inhibits iron uptake and heme synthesis by rabbit reticulocytes. HTF-14 had no significant effect on iron uptake and heme synthesis when non-transferrin donors of iron were examined. Ammonium chloride (NH4Cl) increases intracellular pH and blocks the release or utilization of iron from the internalized transferrin. NH4Cl only slightly affected iron incorporation and heme synthesis from non-transferrin donors of iron. Hemin inhibited transferrin iron uptake and heme synthesis, but had a much lesser effect on iron incorporation and heme synthesis from non-transferrin donors of iron. These results allow us to conclude that transferrin-depleted reticulocytes take up iron from all of the examined non-transferrin iron donors without the involvement of the transferrin/transferrin receptor pathway.  相似文献   

12.
The subcellular localization of 3H-labelled 59Fe-loaded transferrin accumulated by the liver has been studied by means of cell fractionation techniques. More than 96% of the 59Fe present in the liver of rats perfused with 59Fe-labelled transferrin is recovered in the parenchymal cells. Rat livers were perfused with 10 micrograms/ml 3H-labelled 59Fe-saturated transferrin, homogenized separated in nuclear (N), mitochondrial (M), light mitochondrial (L), microsomal (P) and supernatant (S) fractions; M, L and P fractions were further analysed by isopycnic centrifugation in sucrose gradients. 3H label distributes essentially around densities of 1.13-1.14 g/ml overlapping to a large extent with the distribution of galactosyltransferase, the marker enzyme of the Golgi complex. However, after treatment with low concentrations of digitonin the 3H label dissociates from galactosyltransferase and is shifted to higher densities, suggesting an association of transferrin with cholesterol-rich endocytic vesicles which could derive from the plasma membrane. 59Fe is mostly found in the supernatant fraction largely in the form of ferritin, as indicated by its reaction with antiferritin antibodies. In the mitochondrial fraction the density distribution of 59Fe suggests an association with lysosomes and/or mitochondria. In contrast to the lysosomal enzyme cathepsin B, the density distribution of 59Fe was only slightly affected by pretreatment of the rats with Triton WR 1339, suggesting its association with the mitochondria. At 15 degrees C, 59Fe and 3H labels are recovered together in low-density endocytic vesicles. On the basis of our results we suggest that, at low extracellular transferrin concentration, iron uptake by the liver involves endocytosis of the transferrin protein. The complex is interiorized in low-density acidic vesicles where iron is released. The iron passes into the cytosol, where it is incorporated into ferritin and into the mitochondria. The iron-depleted transferrin molecule would then be returned to the extracellular medium during the recycling of the plasma membrane.  相似文献   

13.
Acquisition of iron from transferrin regulates reticulocyte heme synthesis   总被引:6,自引:0,他引:6  
Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59Fe from [59Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [59Fe]transferrin. Also, Fe-SIH stimulates [2-14C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59Fe incorporation into heme from either [59Fe]transferrin or [59Fe]SIH but does reverse the inhibition of 59Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.  相似文献   

14.
Hepatic iron uptake and metabolism were studied by subcellular fractionation of rat liver homogenates after injection of rats with a purified preparation of either native or denatured rat transferrin labelled with 125I and 59Fe. (1) With native transferrin, hepatic 125I content was maximal 5 min after injection and then fell. Hepatic 59Fe content reached maximum by 16 h after injection and remained constant for 14 days. Neither label appeared in the mitochondrial or lysosomal fractions. 59Fe appeared first in the supernatant and, with time, was detectable as ferritin in fractions sedimented with increasingly lower g forces. (2) With denatured transferrin, hepatic content of both 125I and 59Fe reached maximum by 30 min. Both appeared initially in the lysosomal fraction. With time, they passed into the supernatant and 59Fe became incorporated into ferritin. The study suggests that hepatic iron uptake from native transferrin does not involve endocytosis. However, endocytosis of denatured transferrin does occur. After the uptake process, iron is gradually incorporated into ferritin molecules, which subsequently polymerize; there is no incorporation into other structures over 14 days.  相似文献   

15.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

16.
Membrane transport of non-transferrin-bound iron by reticulocytes   总被引:8,自引:0,他引:8  
The transport of non-transferrin-bound iron into rabbit reticulocytes was investigated by incubating the cells in 0.27 M sucrose with iron labelled with 59Fe. In most experiments the iron was maintained in the reduced state, Fe(II), with mercaptoethanol. The iron was taken up by cytosolic, haem and stromal fractions of the cells in greater amounts than transferrin-iron. The uptake was saturable, with a Km value of approx. 0.2 microM and was competitively inhibited by Co2+, Mn2+, Ni2+ and Zn2+. It ceased when the reticulocytes matured into erythrocytes. The uptake was pH and temperature sensitive, the pH optimum being 6.5 and the activation energy for iron transport into the cytosol being approx. 80 kJ/mol. Ferric iron and Fe(II) prepared in the absence of reducing agents could also be transported into the cytosol. Sodium chloride inhibited Fe(II) uptake in a non-competitive manner. Similar degrees of inhibition was found with other salts, suggesting that this effect was due to the ionic strength of the solution. Iron chelators inhibited Fe(II) uptake by the reticulocytes, but varied in their ability to release 59Fe from the cells after it had been taken up. Several lines of evidence showed that the uptake of Fe(II) was not being mediated by transferrin. It is concluded that the reticulocyte can transport non-transferrin-bound iron into the cytosol by a carrier-mediated process and the question is raised whether the same carrier is utilized by transferrin-iron after its release from the protein.  相似文献   

17.
Summary The involvement of membrane phospholipids in the utilization of transferrinbound iron by reticulocytes was investigated using [59Fe]- and [125I]-labelled transferrin and rabbit reticulocytes which had been incubated with phospholipas A. Transferrin and iron uptake and release were all inhibited by phospholipas A which produced a marked decrease in the relative abundance of phosphatidylcholine and phosphatidylethanolamine and equivalent increases in their lyso-compounds in the reticulocyte plasma membrane. There was a close correlation between the iron uptake rate and the rate and amount of transferrin uptake and the amount of the lysophospholipids in the membrane. Incubation of the cells with exogenous lysophosphatidylethanolamine or lysophosphatidylcholine also produced inhibition of iron and transferrin uptake. The reduced uptake produced by phospholipase A could be reversed if the lyso-compounds were removed by fatty acid-free bovine serum albumin or by reincubation in medium 199. Treatment with phospholipase A was shown to increase the amount of transferrin bound by specific receptors on the reticulocyte membrane but to inhibit the entry of transferrin into the cells.The present investigation provides evidence that the phospholipid composition of the cell membrane influences the interaction of transferrin with its receptors, the processes of endocytosis and exocytosis whereby transferrin enters and leaves the cells, and the mechanism by which iron is mobilized between its binding to transferrin and incorporation into heme. In addition, the results indicate that phosphatidylethanolamine is present in the outer half of the lipid bilayer of reticulocyte membrane.  相似文献   

18.
The effect of concanavalin A on transferrin and iron uptake by reticulocytes was determined using rabbit reticulocytes and rabbit transferrin labelled with 59Fe and 125I and concanavalin A (ConA) labelled with 131I. In concentrations of 50–200 μg/ml ConA markedly inhibited iron uptake but did not inhibit transferrin uptake or release from the cells. ConA was itself taken up by rabbit blood cells in a manner similar to that of transferrin except that the uptake was not specific for reticulocytes but occurred also with mature erythrocytes. The inhibition of iron uptake by concanavalin and the uptake of concanavalin by the cells were both inhibited by α-methyl-d-mannoside. It is concluded that the effects observed were due to the binding of concanavalin to glycoproteins of the cell membrane, either by a direct interaction with transferrin receptors or by the production of a non-specific change in the structure of the membrane.  相似文献   

19.
Following a pulse with 59Fe-transferrin, K562 erythroleukemia cells incorporate a significant amount of 59Fe into ferritin. Conditions or manipulations which alter the supply of iron to cells result in changes in the rate of ferritin biosynthesis with consequent variations in the size of the ferritin pool. Overnight exposure to iron donors such as diferric transferrin or hemin increases the ferritin level 2-4- or 6-8-fold above that of the control, respectively. Treatment with the anti-human transferrin receptor antibody, OKT9 (which reduces the iron uptake by decreasing the number of transferrin receptors) lowers the ferritin level by approximately 70-80% with respect to the control. The fraction of total cell-associated 59Fe (given as a pulse via transferrin) that becomes ferritin bound is proportional to the actual ferritin level and is independent of the instantaneous amount of iron taken up. This has allowed us to establish a curve that correlates different levels of intracellular ferritin with corresponding percentages of incoming iron delivered to ferritin. Iron released from transferrin appears to distribute to ferritin according to a partition function; the entering load going into ferritin is set for a given ferritin level over a wide range of actual amounts of iron delivered.  相似文献   

20.
Addition of iron-binding proteins (human serum transferrin, mouse serum transferrin, human lactoferrin) to the luminal fluid in tied-off segments of mouse intestine in vivo led to reduced 59Fe3+ absorption from 59Fe3+-nitrilotriacetate when compared to 59Fe3+-nitrilotriacetate alone. Assay of transferrin in luminal fluid from tied segments revealed only trace amounts of immunoreactivity. The levels of luminal transferrin are unaltered in chronic hypoxia where iron absorption is significantly enhanced. Studies in vitro revealed that NH4Cl, dansylcadavarine, para-chloromercuribenzoate and trinitrobenzenesulphonate have no effect on initial 59Fe3+ uptake rates from 59Fe3+-nitrilotriacetate, while N-ethylmaleimide (1 mM) caused a 40% inhibition. In vivo 59Fe3+ uptake was unaffected by preincubation of tied-off segments with colchicine (5 mM) for up to 2 h. These results suggest that receptor-mediated endocytosis of transferrin is not a significant mechanism in the uptake of luminal Fe3+ by mouse duodenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号