首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

2.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

3.
The molecular environment of Ca2+ translocating sites of skeletal muscle sarcoplasmic reticulum (SR) (Ca2+ + Mg2+)-ATPase has been studied by pulsed-laser excited luminescence of Eu3+ used as a Ca2+ analogue. Interaction of Eu3+ with SR was characterized by investigating its effect on partial reactions of the Ca2+ transport cycle. In native SR vesicles, Eu3+ was found to inhibit Ca2+ binding, phosphoenzyme formation, ATP hydrolysis activity and Ca2+ uptake in parallel fashion. The non-specific binding of Eu3+ to acidic phospholipids associated with the enzyme was prevented by purifying (Ca2+ + Mg2+)-ATPase and exchanging the endogenous lipids with a neutral phospholipid, dioleoylglycerophosphocholine. The results demonstrate that the observed inhibition of Ca2+ transport by Eu3+ is due to its binding to Ca2+ translocating sites. The 7F0----5D0 transition of Eu3+ bound to these sites was monitored. The non-Lorentzian nature of the excitation profile and a double-exponential fluorescence decay revealed the heterogeneity of the two sites. Measurement of fluorescence decay rates in H2O/D2O mixture buffers further distinguished the sites. The number of water molecules in the first co-ordination sphere of Eu3+ bound at transport sites were found to be 4 and 1.5. Addition of ATP reduced these numbers to zero and 0.6. These data show that the calcium ions in translocating sites are well enclosed by protein ligands and are further occluded down to zero or one water molecule of solvation during the transport process.  相似文献   

4.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

5.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

6.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

7.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

8.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

9.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

10.
Two Ca2+-stimulated ATPase activities have been identified in the plasma membrane of rat parotid: (a) a (Ca2+ + Mg2+)-ATPase with high affinity for free Ca2+ (apparent Km = 208 nM, Vmax = 188 nmol/min per mg) and requiring micromolar concentration of Mg2+ and (b) a (Ca2+ or Mg2+)-ATPase with relatively low affinity for free Ca2+ (K0.5 = 23 microM) or free Mg2+ (K0.5 = 26 microM). The low-affinity (Ca2+ or Mg2+)-ATPase can be maximally stimulated by Ca2+ alone or Mg2+ alone. The high-affinity (Ca2+ + Mg2+)-ATPase exhibits sigmoidal kinetics with respect to ATP concentration with K0.5 = 0.4 mM and a Hill coefficient of 1.91. It displays low substrate specificity with respect to nucleotide triphosphates. Although trifluoperazine inhibits the activity of the high affinity (Ca2+ + Mg2+)-ATPase only slightly, it inhibits the activity of the low-affinity (Ca2+ or Mg2+)-ATPase quite potently with 22 microM trifluoperazine inhibiting the enzymic activity by 50%. Vanadate, inositol 1,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, Na+,K+ and ouabain had no effect on the activities of both ATPases. Calmodulin added to the plasma membranes does not stimulate the activities of both ATPases. The properties of the high-affinity (Ca2+ + Mg2+)-ATPase are distinctly different from those of the previously reported Ca2+-pump activity of the rat parotid plasma membrane.  相似文献   

11.
The binding of Eu3+ with Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ([Ca2+ + Mg2+]-ATPase) of cardiac sarcoplasmic reticulum (SR) has been investigated using direct laser excited Eu3+ luminescence. Eu3+ is found to inhibit both Ca2+-dependent ATPase activity and Ca2+-uptake in a parallel manner. This is attributed to the binding of Eu3+ to the high affinity Ca2+-binding sites. The Ki for Ca2+-dependent ATPase is approximately 50 nM. The 7F0----5D0 excitation spectrum of Eu3+ in cardiac SR shows a peak at 579.3 nm, as compared to 578.8 nm in potassium-morpholino propane sulfonic acid (K-MOPS) pH 6.8. Upon binding with cardiac SR, Eu3+ shows an increase in fluorescence intensity as well as in lifetime values. The fluorescence decay of bound Eu3+ exhibits a double-exponential curve. The apparent number of water molecules in the first coordination sphere of Eu3+ in SR is 2.8 for the short component and 1.0 for the long component. In the presence of ATP, a further increase in fluorescence lifetimes is observed, and the number of water molecules in the first coordination sphere of Eu3+ is reduced further to 1.3 and 0.5. The double exponential nature of the decay curve and the different number of water molecules coordinated to Eu3+ for both decay components suggest that Eu3+ binds to two sites and that these are heterogeneous. The reduction in the number of H2O ligands in the presence of ATP shows a change in the molecular environment of the Eu3+-binding sites upon phosphoenzyme formation, with a movement of Eu3+ to an occluded site on the enzyme.  相似文献   

12.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

13.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K1 1/2 = 0.12 microM) and the second had a comparatively low affinity (K2 1/2 = 49.5 microM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 microM). Calmodulin (12.5 micrograms/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 microM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

14.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

15.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

16.
Inhibition of red cell Ca2+-ATPase by vanadate   总被引:3,自引:0,他引:3  
1. The Mg2+- plus Ca2+-dependent ATPase (Ca2+-ATPase) in human red cell membranes is susceptible to inhibition by low concentrations of vanadate. 2. Several natural activators of Ca2+-ATPase (Mg2+, K+, Na+ and calmodulin) modify inhibition by increasing the apparent affinity of the enzyme for vanadate. 3. Among the ligands tests, K+, in combination with Mg2+, had the most pronounced effect on inhibition by vanadate. 4. Under conditions optimal for inhibition of Ca2+-ATPase, the K 1/2 for vanadate was 1.5 microM and inhibition was nearly complete at saturating vanadate concentrations. 5. There are similarities between the kinetics of inhibition of red cell Ca2+-ATPase and (Na+ + K+)-ATPase prepared from a variety of sources; however, (Na+ + K+)-ATPase is approx. 3 times more sensitive to inhibition by vanadate.  相似文献   

17.
Interaction between Gd3+ and Tb3+ ions and Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. Three classes of lanthanide-ion binding sites with different affinities were distinguished. Binding of Gd3+ to the site with the highest affinity seemed to occur at less than 10(-6)M free Gd3+ and resulted in severe inhibition of ATPase activity. The reaction rates of both E-P formation and decomposition in the forward direction were inhibited in parallel with this binding, whereas ADP-dependent decay of E-P in the backward direction was not. At these Gd3+ concentrations, Ca2+-binding to the transport site was not inhibited. Binding of Gd3+ and Tb3+ to the Ca2+-transport site did occur, but more than 10(-5)M free Gd3+ or Tb3+ was required for effective competition with Ca2+ for that site. Gd3+ bound to the transport site in place of Ca2+ did not activate the E-P intermediate formation. Addition of 10(-1)M Tb3+ to a suspension of sarcoplasmic reticulum membranes resulted in marked enhancement of Tb3+ fluorescence, which is due to an energy transfer from aromatic amino acid residues of ATPase to Tb3+ ions bound to the low affinity site of the enzyme. Gd3+ and Mn2+ competed with Tb3+ for that site, but Ca2+, Zn2+, and Cd2+ did not.  相似文献   

18.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

19.
The high-affinity Ca2+-binding sites of cardiac sarcoplasmic reticulum (Ca2+ +Mg2+)-ATPase have been probed using trivalent lanthanide ions. Non-radiative energy-transfer studies, using luminescent probe Eu3+ as a donor and Nd3+ or Pr3+ as acceptor, were carried out to estimate the distance between two high-affinity Ca2+-binding/transport sites. Eu3+ was excited directly with pulsed laser light and the energy-transfer efficiency to Nd3+ or Pr3+ was measured, under the conditions in which most donor-acceptor pairs occupied the high-affinity Ca2+ sites. The distance between two high-affinity Ca2+ sites is about 0.89 nm. In the presence of ATP the distance between the high-affinity sites is about 0.855 nm, whereas in the presence of adenosine 5'-[beta, gamma-methylene]triphosphate or adenosine 5'-[beta, gamma-imino]triphosphate the distance is about 0.895 nm. To estimate the distance between the high-affinity Ca2+ sites and ATP-binding/hydrolytic site, we have measured the energy-transfer efficiency between Eu3+ and Cr3+-ATP with Eu3+ at the high-affinity Ca2+ sites and Cr3+-ATP at the ATP-binding/hydrolytic site. Our results show that ATP-binding/hydrolytic site is separated by about 2.2 nm from each high-affinity Ca2+ site.  相似文献   

20.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号