首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The influence of topoisomerase I and gyrase mutations in Escherichia coli on the supercoiled density of recombinant plasmids and the stability of left-handed Z-DNA was investigated. The formation of Z-DNA in vivo by dC-dG sequences of different lengths was used to determine the effective plasmid supercoil densities in the mutant strains. The presence of Z-DNA in the cells was detected by linking number and EcoRI methylase inhibition assays. A change in the unrestrained superhelical tension in vivo directly effects the B- to Z-DNA transition. Alterations in the internal or external environment of the cells, such as the inactivation of gyrase or topoisomerase I, a gyrase temperature-sensitive mutant, or starvation of cells, have a dramatic influence on the topology of plasmids. Also, E. coli has significantly more superhelical strain than Klebsiella, Morganella, or Enterobacter. These studies indicate that linking deficiency and effective supercoil density are mutually independent variables of plasmid tertiary structure. A variety of factors, such as protein-DNA interactions, activity of topoisomerases, and the resulting supercoil density, contribute to the B to Z transition inside living cells.  相似文献   

2.
Cytosine methylation has energetic and structural influences on left-handed Z-DNA formation in supercoiled plasmids. The restriction and modification enzymes from Haemophilus haemolyticus (HhaI and M.HhaI) provide a system to locate and analyze small segments of Z-DNA in large supercoiled plasmids. An approach is outlined that uses M.HhaI as an in vivo conformational probe for the detection of unusual DNA structures in a living cell. Also, characteristic features of the M.HhaI gene and protein are discussed.  相似文献   

3.
4.
The ability to clone a variety of sequences with varying capabilities of adopting non-B structures (left-handed Z-DNA, cruciforms or triplexes) into three loci of pBR322 was investigated. In general, the inserts were stable (non-deleted) in the EcoRI site (an untranslated region) of pBR322. However, sequences most likely to adopt left-handed Z-DNA or triplexes in vivo suffered deletions when cloned into the BamHI site, which is located in the tetracycline resistance structural gene (tet). Conversely, when the promoter for the tet gene was altered by filling-in the unique HindIII or ClaI sites, the inserts in the BamHI site were not deleted. Concomitantly, the negative linking differences of the plasmids were reduced. Also, inserts with a high potential to adopt Z-DNA conformations were substantially deleted in the PvuII site of pBR322 (near the replication origin and the copy number control region), but were less deleted if the tet promoter was insertion-mutated. The deletion phenomena are due to the capacity of these sequences to adopt left-handed Z-DNA or triplexes in vivo since shorter inserts, less prone to form non-B DNA structures, or random sequences, did not exhibit this behavior. Sequences with the potential to adopt cruciforms were stable in all sites under all conditions. These results reveal a complex interrelationship between insert deletions (apparently the result of genetic recombination), negative supercoiling, and the formation of non-B DNA structures in living Escherichia coli cells.  相似文献   

5.
6.
The capabilities of five recombinant plasmids, containing relatively long (approximately 60-100 base pairs) perfect inverted repeat (IR) inserts, to support supercoil stabilized non-B-DNA structures were studied in vitro. The IRs were also alternating purine-pyrimidine sequences, thus, each could form either left-handed Z-DNA or cruciforms. Single-strand specific endonucleases, restriction endonucleases and methylases, and OsO4 modifications were used to characterize the DNA structures. Two-dimensional gel electrophoretic studies indicated that three of the five IRs formed both cruciforms and Z-DNA. (C-G) containing inserts preferred to form Z-DNA, whereas (T-G) sequences favored cruciforms. In vivo supercoil relaxation experiments demonstrated the existence of cruciforms in Escherichia coli. The physiological significance of these structures is discussed.  相似文献   

7.
R R Sinden  T J Kochel 《Biochemistry》1987,26(5):1343-1350
Z-DNA-forming sequences, (GT)21, (GT)12ATGT, and (CG)6TA(CG)6, were cloned into plasmids. These sequences formed left-handed Z-DNA conformations under torsional tension from negative supercoiling of DNA. 4,5',8-Trimethylpsoralen, on absorption of 360-nm light, forms monoadducts and interstrand cross-links in DNA that exists in the B-helical conformation. Trimethylpsoralen cross-links were introduced into the potential Z-DNA-forming sequences in relaxed DNA when these sequences existed as B-form DNA. In supercoiled DNA when these sequences existed in the Z conformation, the rate of cross-linking was greatly reduced, and trimethylpsoralen did not form monoadducts appreciably to Z-DNA. As an internal control in these experiments, the rates of cross-linking of the Z-DNA-forming sequences were measured relative to that of an adjacent, cloned sequence that could not adopt a Z conformation. The initial relative rates of cross-linking to Z-DNA-forming sequences were dependent on the superhelical density of the DNA, and the rates were ultimately reduced by factors of 10-15 for Z-DNA in highly supercoiled plasmids. This differential rate of cross-linking provides a novel assay for Z-DNA. Initial application of this assay in vivo suggests that a substantial fraction of (CG)6TA(CG)6, which existed as Z-DNA in plasmid molecules purified from cells, existed in the B conformation in vivo.  相似文献   

8.
Probing of DNA polymorphic structure in the cell with osmium tetroxide   总被引:4,自引:0,他引:4  
It is shown that osmium tetroxide, 2,2'-bipyridine can be applied as a probe of DNA structure in a bacterial cell. Using this probe we demonstrate (a) presence of structural distortions at the junctions between the right-handed B and left-handed Z DNA in a recombinant plasmid pRW751 and (b) unusual structure of the d(A-T)16 insert in pAT32 plasmid in E. coli cells and in in vitro.  相似文献   

9.
In contrast to many type II restriction enzymes, dimeric proteins that cleave DNA at individual recognition sites 4-6 bp long, the SfiI endonuclease is a tetrameric protein that binds to two copies of an elongated sequence before cutting the DNA at both sites. The mode of action of the SfiI endonuclease thus seems more appropriate for DNA rearrangements than for restriction. To elucidate its biological function, strains of Escherichia coli expressing the SfiI restriction-modification system were transformed with plasmids carrying SfiI sites. The SfiI system often failed to restrict the survival of a plasmid with one SfiI site, but plasmids with two or more sites were restricted efficiently. Plasmids containing methylated SfI sites were not restricted. No rearrangements of the plasmids carrying SfiI sites were detected among the transformants. Hence, provided the target DNA contains at least two recognition sites, SfiI displays all of the hallmarks of a restriction-modification system as opposed to a recombination system in E. coli cells. The properties of the system in vivo match those of the enzyme in vitro. For both restriction in vivo and DNA cleavage in vitro, SfiI operates best with two recognition sites on the same DNA.  相似文献   

10.
In vivo existence of left-handed DNA   总被引:2,自引:0,他引:2  
A genetic-biochemical assay has been developed to investigate the in vivo existence and consequences of unusual DNA structures. Left-handed DNA was shown to exist in living Escherichia coli. The EcoRI methyltransferase gene (temperature-sensitive) was cloned to serve as a probe for perturbed GAATTC sites in vivo. This plasmid was cotransformed with different plasmids containing inserts that had varying capacities to form left-handed helices or cruciforms with a target EcoRI site in the center or at the ends of the inserts. Inhibition of methylation in vivo was found for the stable inserts with the longest left-handed helices. In vitro methylation with the purified M.EcoRI enzyme agreed with the in vivo results.  相似文献   

11.
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli.  相似文献   

12.
B H Johnston  A Rich 《Cell》1985,42(3):713-724
Chemical probes sensitive to alterations in DNA conformation, especially Z-DNA, have been identified. These permit cleavage of DNA at sites of unusual structure, the results of which can be displayed on a sequencing gel. Using supercoiled plasmids containing inserts of d(C-G)16 and d(C-A)31 X d(T-G)31, it was found that hydroxylamine and osmium tetraoxide react preferentially with cytosines and thymines, respectively, near B-DNA-Z-DNA junctions; diethylpyrocarbonate reacts more strongly with purines within Z-DNA regions; and dimethylsulfate and diethylsulfate react more strongly with guanines in Z-DNA that are out of phase with the usual pattern of purine-pyrimidine alternation. Our results show that B-Z boundaries are mobile and that with increasing torsional strain, the Z-DNA regions can expand to include nonalternating nucleotide sequences.  相似文献   

13.
Cytosine methylation enhances Z-DNA formation in vivo.   总被引:1,自引:0,他引:1       下载免费PDF全文
The influence of cytosine methylation on the supercoil-stabilized B-Z equilibrium in Escherichia coli was analyzed by two independent assays. Both the M.EcoRI inhibition assay and the linking-number assay have been used previously to establish that dC-dG segments of sufficient lengths can exist as left-handed helices in vivo. A series of dC-dG plasmid inserts with Z-form potential, ranging in length from 14 to 74 base pairs, was investigated. Complete methylation of cytosine at all HhaI sites, including the inserts, was obtained by coexpression of the HhaI methyltransferase (M.HhaI) in cells also carrying a dC-dG-containing plasmid. Both assays showed that for all lengths of dC-dG inserts, the relative amounts of B and Z helices were shifted to more Z-DNA in the presence of M.HhaI than in the absence of M.HhaI. These results indicate that cytosine methylation enhances the formation of Z-DNA helices at the superhelix density present in E. coli. The B-Z equilibrium, in combination with site-specific base methylation, may constitute a concerted mechanism for the modulation of DNA topology and DNA-protein interactions.  相似文献   

14.
Chimeric plasmids able to replicate in Bacteroides fragilis or in B. fragilis and Escherichia coli were constructed and used as molecular cloning vectors. The 2.7-kilobase pair (kb) cryptic Bacteroides plasmid pBI143 and the E. coli cloning vector pUC19 were the two replicons used for these constructions. Selection of the plasmid vectors in B. fragilis was made possible by ligation to a restriction fragment bearing the clindamycin resistance (Ccr) determinant from a Bacteroides R plasmid, pBF4;Ccr was not expressed in E. coli. The chimeric plasmids ranged from 5.3 to 7.3 kb in size and contained at least 10 unique restriction enzyme recognition sites suitable for cloning. Transformation of B. fragilis with the chimeric plasmids was dependent upon the source of the DNA; generally 10(5) transformants micrograms-1 of DNA were recovered when plasmid purified from B. fragilis was used. When the source of DNA was E. coli, there was a 1,000-fold decrease in the number of transformants obtained. Two of the shuttle plasmids not containing the pBF4 Ccr determinant were used in an analysis of the transposon-like structure encoding Ccr in the R plasmid pBI136. This gene encoding Ccr was located on a 0.85-kb EcoRI-HaeII fragment and cloned nonselectively in E. coli. Recombinants containing the gene inserted in both orientations at the unique ClaI site within the pBI143 portion of the shuttle plasmids could transform B. fragilis to clindamycin resistance. These results together with previous structural data show that the gene encoding Ccr lies directly adjacent to one of the repeated sequences of the pBI136 transposon-like structure.  相似文献   

15.
Membrane vesicles are released from the surfaces of many gram-negative bacteria during growth. Vesicles consist of proteins, lipopolysaccharide, phospholipids, RNA, and DNA. Results of the present study demonstrate that membrane vesicles isolated from the food-borne pathogen Escherichia coli O157:H7 facilitate the transfer of genes, which are then expressed by recipient Salmonella enterica serovar Enteritidis or E. coli JM109. Electron micrographs of purified DNA from E. coli O157:H7 vesicles showed large rosette-like structures, linear DNA fragments, and small open-circle plasmids. PCR analysis of vesicle DNA demonstrated the presence of specific genes from host and recombinant plasmids (hly, L7095, mobA, and gfp), chromosomal DNA (uidA and eaeA), and phage DNA (stx1 and stx2). The results of PCR and the Vero cell assay demonstrate that genetic material, including virulence genes, is transferred to recipient bacteria and subsequently expressed. The cytotoxicity of the transformed enteric bacteria was sixfold higher than that of the parent isolate (E. coli JM109). Utilization of the nonhost plasmid (pGFP) permitted the evaluation of transformation efficiency (ca. 10(3) transformants microg of DNA(-1)) and demonstrated that vesicles can deliver antibiotic resistance. Transformed E. coli JM109 cells were resistant to ampicillin and fluoresced a brilliant green. The role vesicles play in genetic exchange between different species in the environment or host has yet to be defined.  相似文献   

16.
Searching for potential Z-DNA in genomic Escherichia coli DNA   总被引:3,自引:0,他引:3  
The Clarke-Carbon library with Escherichia coli DNA cloned into plasmid ColE1 was partially screened for Z-DNA with the monoclonal antibody Z-D11 using the retardation of the covalently closed circular DNA-protein complex by nitrocellulose filters. About 85% of the plasmids tested at "natural" supercoil density bound to the filter. Together with binding studies of the iodinated antibody, one Z-DNA segment per about 18,000 base-pairs of E. coli DNA is observed. One clone containing the region around the lactose operon, pLC20-30, was studied in detail. Subcloning a partial Sau3A digest and selection with antibodies gave three different Z-forming sites. They were mapped to within about +/- 20 base-pairs by preparing unidirectional deletion clones, selection of protein binding plasmids on nitrocellulose filters and subsequent sizing on agarose gels. The size of the Z-DNA-forming segments was estimated from two-dimensional gels of topoisomer mixtures. Together with results from sequencing of the plasmid DNA using exonuclease III to create single-stranded templates, stretches of alternating purine-pyrimidine tracts of 12 to 15 base-pairs were found to be responsible for Z-DNA formation. One of the sites was found in the middle of the lacZ gene, where it might be an obstacle for RNA polymerase. The methods used here should also be helpful for studying other DNA-protein sites, especially if they exist only in supercoiled DNA.  相似文献   

17.
It was shown for the first time that the structural distortions at the junctions between contiguous right-handed and left-handed Z-DNA segments can be recognized in bacterial cells. E. coli containing recombinant plasmid pPK1 (a derivative of pUC19 containing (dC-dG)13 and (dC-dG)16 blocks) were treated with osmium tetroxide, 2.2'-bipyridine (Os,bipy); after this treatment pPK1 DNA was isolated by the boiling method. pPK1 DNA was then cleaved with BglI, and inhibition of BamHI (with its recognition sequence GGATCC lying on the boundary between the (dC-dG)n segments and the pUC19 nucleotide sequence) cleavage was tested. Treatment of cells with 2 mmol/l Os,bipy resulted in a strong inhibition of BamHI cleavage at both restriction sites showing a site-specific osmium modification at the B--Z junction. About the same inhibition of BamHI cleavage was observed after treatment of isolated pPK1 DNA with 0.2 mmol/l Os,bipy.  相似文献   

18.
Base excision repair is initiated by DNA glycosylases removing inappropriate bases from DNA. One group of these enzymes, comprising 3-methyladenine DNA glycosylase II (AlkA) from Escherichia coli and related enzymes from other organisms, has been found to have an unusual broad specificity towards quite different base structures. We tested whether such enzymes might also be capable of removing normal base residues from DNA. The native enzymes from E.coli, Saccharomyces cerevisiae and human cells promoted release of intact guanines with significant frequencies, and further analysis of AlkA showed that all the normal bases can be removed. Transformation of E. coli with plasmids expressing different levels of AlkA produced an increased spontaneous mutation frequency correlated with the expression levels, indicating that excision of normal bases occurs at biologically significant rates. We propose that the broad specificity 3-methyladenine DNA glycosylases represent a general type of repair enzyme 'pulling' bases in DNA largely at random, without much preference for a specific structure. The specificity for release of damaged bases occurs because base structure alterations cause instability of the base-sugar bonds. Damaged bases are therefore released more readily than normal bases once the bond activation energy is reduced further by the enzyme. Qualitatively, the model correlates quite well with the relative rate of excision observed for most, if not all, of the substrates described for AlkA and analogues.  相似文献   

19.
Our discovery that plasmids containing the Friedreich's ataxia (FRDA) expanded GAA.TTC sequence, which forms sticky DNA, are prone to form dimers compared with monomers in vivo is the basis of an intracellular assay in Escherichia coli for this unusual DNA conformation. Sticky DNA is a single long GAA.GAA.TTC triplex formed in plasmids harboring a pair of long GAA.TTC repeat tracts in the direct repeat orientation. This requirement is fulfilled by either plasmid dimers of DNAs with a single trinucleotide repeat sequence tract or by monomeric DNAs containing a pair of direct repeat GAA.TTC sequences. DNAs harboring a single GAA.TTC repeat are unable to form this type of triplex conformation. An excellent correlation was observed between the ability of a plasmid to adopt the sticky triplex conformation as assayed in vitro and its propensity to form plasmid dimers relative to monomers in vivo. The variables measured that strongly influenced these measurements are as follows: length of the GAA.TTC insert; the extent of periodic interruptions within the repeat sequence; the orientation of the repeat inserts; and the in vivo negative supercoil density. Nitrogen mustard cross-linking studies on a family of GAA.TTC-containing plasmids showed the presence of sticky DNA in vivo and, thus, serves as an important bridge between the in vitro and in vivo determinations. Biochemical genetic studies on FRDA containing DNAs grown in recA or nucleotide excision repair or ruv-deficient cells showed that the in vivo properties of sticky DNA play an important role in the monomer-dimer-sticky DNA intracellular intercon-versions. Thus, the sticky DNA triplex exists and functions in living cells, strengthening the likelihood of its role in the etiology of FRDA.  相似文献   

20.
Shuttle vectors have been constructed that are able to replicate in either Escherichia coli or plant cells. They contain the ColE1 origin of replication and parts of the wheat dwarf virus genome, a geminivirus infecting a variety of species of monocotyledonous plants. Such plasmids are able to replicate in E. coli and wheat cells. The plasmids can be rescued in E. coli and show no changes during their passage through plant cells. Such an E. coli/plant cell shuttle vector system could be used for the amplification of foreign genes in plant cells, for studies on DNA rearrangement or the isolation of plant transposons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号