首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 393 毫秒
1.
用二乙基亚硝胺大鼠肝癌,隔周测定肝脏胞液、膜性和胞核中的蛋白激酸A和蛋白激酶的活力,发现胞液PKA在诱癌过程中活力改变不大,胞淮PKC则逐步增高,在第13周和20周形成两个活力高峰。膜性PKA和PKC都呈双相变化,即在癌前期(10-14周)增加,癌形成期(17-20周)反而降至正常以下,胞核PKA和PKC也都在癌前期升至高峰,而癌形成期则低于癌前期,但仍高于正常或接近正常,因只有膜性PKC在大鼠老  相似文献   

2.
维甲酸对亚硝胺诱发大鼠肝癌的阻断作用   总被引:2,自引:0,他引:2  
二乙基亚硝胺(DEN)诱发大鼠肝癌过程中,可使肝中增殖指标γ-谷氨酰转肽酶(γ-GT),谷胱甘肽S-转移酶(GST),胞液和膜性酪氨酸蛋白激酶(c-TPK,m-TPK)有不同程度的逐步升高,直至16周(除c-TPK在第12周活力最高外),而分化指标精氨酸酶(AGN)则明显降低,如在诱癌开始的同时给予全反式维甲酸(RA)连续16周则可延缓γ-GT、GST和两种TPK的升高和AGN的降低,这种作用并非RA本身对酶活力的影响,而是RA阻断肝癌发展的结果。  相似文献   

3.
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮(genistein)在抑制TPK和PKC的同时,抑制GnT-V的基础活力,并完全阻断EGF或PMA对GnT-V的增高作用;TPK的特异性抑制剂Tyrphostin-25和PKC的特异性抑制剂D-鞘氨醇分别应用时,各自只能部分地取消EGF或PMA对GnT-V的诱导。但当Tyrphostin-25和D-鞘氨醇同时加入培养基中则可完全阻断EGF或PMA对GnT-V的诱导激活。蛋白质合成抑制剂环己亚胺和蛋白激酶抑制剂作用相仿,不但可抑制GnT-V的基础活力,也可完全消除EGF或PMA对GnT-V的激活。以上结果提示EGF或PMA通过蛋白激酶调节GnT-V的酶蛋白合成,并且GnT-V受到膜性TPK和PKC的双重调节,其中m-TPK较m-PKC更为重要。  相似文献   

4.
人肝癌细胞株7721细胞的N-乙酰氨基葡萄糖转移酶Ⅲ(GnTⅢ)活性受Ser/Thr蛋白激酶的两种抑制剂quercetin和三氟吡嗪(TFP).蛋白激酶C(PKC)的两种特异性抑制剂D-鞘氨醇和staurosporine的抑制。用PMA处理细胞舌,GnTⅢ活力随膜性PKC(m-PKC)活力而平行变化,但与胞液PKC活力的变化无关。Quercetin、D-鞘氨醇和staurosporine还能够阻断PMA对GnTⅢ的激活。Quercetin、staurosporine对m-PKC和GnTⅢ的抑制作用基本上与它们的应用浓度成正比关系。当人及大鼠肾脏的粗GnT制剂分别用碱性磷酸酶切除磷酸基后,GDTⅢ的活力明显下降。这些结果表明m-PKC可能通过蛋白质的Ser/Thr残基上磷酸化和去磷酸化作用直接或间接地调节GnTⅢ。  相似文献   

5.
酪氨酸蛋白激酶和蛋白激酶C对N—乙酰氨基葡萄糖转?…   总被引:1,自引:0,他引:1  
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮在抑制TPK和PKC的同时,抑制GnT-V的  相似文献   

6.
本文观察了溶血磷脂酸(LPA)对心肌细胞内蛋白激酶C(PKC)分布的影响。在离体家猫心脏灌流LPA(10-8mol/L)后差速离心分别制备心肌细胞胞浆、核及肌膜,测定各部分PKC活性。结果显示:与对照组比较,LPA组心肌总PKC活性增加9.8%(P<0.05),但胞浆PKC活性降低10.3%(P<0.05),膜与核的活性分别增加38.8%和77.6%(P<0.01)。结论:LPA刺激心肌细胞PKC活性增强,并可能使PKC从胞浆向胞核和肌膜部分转移  相似文献   

7.
采用大鼠海马脑片体外缺血模型,观察海马突触体内蛋白激酶C(PKC)活性的变化,以及这种变化对突触体谷氨酸(GLU)摄取的影响。结果显示:海马脑片体外“缺血”10min,其突触体内PKC活性基本不变,而缺血30min,突触体内PKC活性显著上升(P<0.01,n=6);非N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂DNQX有效地抑制PKC活性的同时,可降低胞外GLU的堆积,而NMDA受体阻断剂AP_5无作用。进一步实验证明,PKC激动剂PDB浓度依赖性地抑制突触体对3H-GLU的摄取(IC50=131±10μmol/L),此抑制作用可由PKC抑制剂H-7(100μmol/L)抵消。提示脑缺血诱发GLU堆积的作用机理可能是:脑缺血引发钙内流导致GLU过量释放,GLU又通过突触前非NMDA受体激活PKC,抑制其自身摄取,正反馈性加重胞外GLU的堆积。  相似文献   

8.
雄激素受体在肝癌发生过程中的表达及意义   总被引:1,自引:0,他引:1  
为了进一步探讨雄激素受体(AndrogenReceptor,AR)作为肝癌标志物的意义,本文采用免疫组织化学ABC法,对二乙基亚硝胺(DEN)诱发大鼠肝癌发生过程中肝细胞雄激素受体(AR)的表达进行了系统观察。结果显示:正常大鼠的AR阳性肝细胞极少,DEN诱癌第4周可见少量肝细胞呈AR阳性表达,细胞散在分布,胞质和/或胞核内可见棕褐色阳性反应颗粒。随着肝癌发展进程,AR阳性肝细胞数逐渐增多,呈簇状或片状分布。至诱癌第18周,肝癌结节内肝癌细胞大多呈AR阳性表达。本实验结果表明,AR与肝癌的发生和发展具有密切关系  相似文献   

9.
大鼠肝癌发生过程中p53的突变和甲胎蛋白的表达   总被引:2,自引:0,他引:2  
采用免疫组织化学ABC和PAP法,对二乙基亚硝胺(DEN)诱发大鼠肝癌发生过程中突变型p53蛋白(mp53)和甲胎蛋白(AFP)在肝细胞中的表达进行了系统观察。结果显示:(1)DEN诱发大鼠肝癌发生率为100%;(2)正常大鼠及诱癌第4周大鼠的肝细胞均不表达mp53,至诱癌第8周,可见少量肝细胞表达mp53,诱癌晚期的癌结节内大部分肝癌细胞呈mp53阳性表达,mp53免疫反应阳性产物为胞核内棕褐色颗粒;(3)正常大鼠肝细胞不表达AFP,诱癌早期(4~8周)的大鼠肝小叶内可见少量AFP阳性肝细胞,多为小肝细胞,呈散在分布,此后AFP阳性肝细胞逐渐增多,晚期的癌结节内大部分癌细胞呈AFP阳性,AFP免疫反应阳性产物为胞浆内棕褐色颗粒。结果提示,mp53和AFP可作为分析肝癌进展的病理学指标  相似文献   

10.
佛波酯引起蛋白激酶C下降调节的专一性   总被引:8,自引:0,他引:8  
探讨了佛波酯(PMA)对蛋白激酶的下降调节是否有激酶专一性及亚型专一性.用组蛋白H1作为蛋白激酶C(PKC)和蛋白激酶A(PKA)的受体底物,加入PKC和PKA的特异性激活剂区分PKC和PKA,用聚谷酪(41)为酪氨酸蛋白激酶(TPK)的专一性受体底物,以32P-ATP为32P共同供体底物测定三种蛋白激酶的活力,并用免疫组化法测定PKC亚型.结果发现PMA对人7721肝癌细胞只引起PKC而不引起PKA和TPK的下降调节,PKC的非特异性抑制剂槲皮素和特异性抑制剂D-鞘氨醇能大部分取消PMA对PKC的下降调节,但TPK抑制剂genestein则没有阻断下降调节的作用.用HL-60细胞还证明PMA只对含量丰富的PKCα和PKCβⅡ亚型而不对含量很少的PKCβⅠ亚型发生下降调节.上述结果说明PMA对蛋白激酶的下降调节有激酶和亚型专一性.  相似文献   

11.
The actions of parathyroid hormone (PTH) on the renal cortex are thought to be mediated primarily by cAMP-dependent protein kinase (PKA) with some suggestion of a role for protein kinase C (PKC). However, present methods for assaying PKA and PKC in subcellular fractions are insensitive and require large amounts of protein. Recently, a sensitive method for measuring the activity of protein kinases has been reported. This method uses synthetic peptides as substrates and a tandem chromatographic procedure for isolating the phosphorylated peptides. We have adapted this method to study the effect of PTH on PKA and PKC activity using thin slices of rat renal cortex. PTH (250 nM) stimulated cytosolic PKA activity four- to fivefold within 30 s, and PKA activity was sustained for at least 5 min. PTH also rapidly stimulated PKC activity in the membrane fraction and decreased PKC activity in the cytosol. These changes were maximal at 30 s, but unlike changes in PKA, they declined rapidly thereafter. PTH significantly activated PKC only at concentrations of 10 nM or greater. This study demonstrates that PTH does activate PKC in renal tissue, although the duration of activation is much less than for PKA. It also demonstrates that a combination of synthetic peptides with tandem chromatography can be used as a sensitive assay procedure for protein kinase activity in biological samples.  相似文献   

12.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

13.
Abstract: We examined protein kinase C (PKC) activity in Ca2+-dependent PKC (Ca2+-dependent PKC activities) and Ca2+-independent PKC (Ca2+-independent PKC activities) assay conditions in brains from Alzheimer's disease (AD) patients and age-matched controls. In cytosolic and membranous fractions, Ca2+-dependent and Ca2+-independent PKC activities were significantly lower in AD brain than in control brain. In particular, reduction of Ca2+-independent PKC activity in the membranous fraction of AD brain was most enhanced when cardiolipin, the optimal stimulator of PKC-ε, was used in the assay; whereas Ca2+-independent PKC activity stimulated by phosphatidylinositol, the optimal stimulator of PKC-δ, was not significantly reduced in AD. Further studies on the protein levels of Ca2+-independent PKC-δ, PKC-ε, and PKC-ζ in AD brain revealed reduction of the PKC-ε level in both cytosolic and membranous fractions, although PKC-δ and PKC-ζ levels were not changed. These findings indicated that Ca2+-dependent and Ca2+-independent PKC are changed in AD, and that among Ca2+-independent PKC isozymes, the alteration of PKC-ε is a specific event in AD brain, suggesting its crucial role in AD pathophysiology.  相似文献   

14.
Changes in protein kinase C (PKC) (calcium- and phospholipid-dependent protein kinase) activity in rat liver during different metabolic phases of sepsis were studied. Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into three groups: control, early sepsis, and late sepsis. Early and late sepsis refers to those animals sacrificed at 9 and 18 h, respectively, after CLP. Hepatic PKC was extracted and partially purified by ammonium sulfate fractionation and DEAE-cellulose chromatography. PKC activity was assayed based on the rate of incorporation of 32p from [-32P]ATP into histone. The results show that during early sepsis, both membrane-associated and cytosolic PKC activities remained relatively unaltered. During late sepsis, membrane-associated PKC was unaffected while cytosolic PKC activity was decreased by 19.5-34.4%. Kinetic analysis of the data on cytosolic PKC during late phase of sepsis reveals that the Vmax values for ATP, histone, Ca2+, phosphatidylserine, and diacylglycerol were decreased by 23.4, 22.1, 19.5, 25, and 34.4%, respectively, with no changes in their Km values. These data indicate that cytosolic PKC activity was inactivated in rat liver during late hypoglycemic phase of sepsis. Since PKC-mediated phosphorylation plays an important role in regulating hepatic glucose metabolism, an inactivation of cytosolic PKC may contribute to the development of hypoglycemia during late phase of sepsis.  相似文献   

15.
The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.  相似文献   

16.
Local anaesthetics are drugs that prevent or relieve pain by interrupting nervous conduction and are the most commonly used drugs in dentistry. Their main targets of action are voltage-dependent Na+ channels. The Na+ channel is modulated by phosphorylation of two enzymes: PKA (protein kinase A) and PKC (protein kinase C). We studied the ability of lidocaine to modulate programmed cell death of human gingival fibroblasts and the mechanisms involved in this process. Lidocaine (10-5 to 10-7 M) stimulated apoptosis in primary cultures and the caspase-3 activity in a concentration-dependent manner. The stimulatory effect of lidocaine on apoptosis was attenuated in the presence of HA 1004 (PKA inhibitor) and stimulated by staurosporine and Go 6976 (PKC inhibitors). Lidocaine-induced apoptotic nuclei correlated positively with cAMP accumulation and negatively with PKC activity. These results show that lidocaine promotes apoptosis in human gingival fibroblasts at concentrations used for local anaesthesia. The mechanism involves PKA stimulation and PKC inhibition, which in turn stimulates caspase-3 and leads to programmed cell death.  相似文献   

17.
Rod outer segments (ROS) exhibit high acyltransferase (AT) activity, the preferred substrate of which being lysophosphatidylcholine. To study factors possibly regulating ROS AT activity purified ROS membranes were assayed under conditions under which protein kinase C (PKC), cAMP-dependent protein kinase (PKA), and phosphatases were stimulated or inhibited. PKC activation produced a significant increase in the acylation of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) with oleate, it inhibited phosphatidylcholine (PC) acylation, and phosphatidylserine (PS) and phosphatidic acid (PA) acylation remained unchanged. ROS PKA activation resulted in increased oleate incorporation into PS and PI while the acylation of PC, PE, and PA remained unchanged. Inhibition of ROS PKC or PKA produced, as a general trait, inverse effects with respect to those observed under kinase-stimulatory conditions. ROS phosphatase 2A was inhibited by using okadaic acid, and the changes observed in AT activity are described. These findings suggest that changes in ROS protein phosphorylation produce specific changes in AT activity depending on the phospholipid substrate. The effect of light on AT activity in ROS membranes was also studied and it is reported that acylation in these membranes remains unchanged independent of the illumination condition used.  相似文献   

18.
研究EBV体外再感染CNE-2Z细胞后,不同组分中PKC(蛋白激酶C)和TPK(酪氨酸蛋白激酶)活性的影响,并探讨PKC和TPK活性与细胞增殖的关系。实验分三组即对照组、EBV组和EBV+TPA组,用免疫细胞化学(以小鼠抗EB病毒早期抗原)检测EBV在体外能否再感染CNE-2Z细胞,用特异底物法和特异激活剂法分别测定其PKC和TPK活性,MTT法检测CNE-2Z细胞体外增殖能力。结果显示未处理CNE-2Z细胞中PKC活性为膜性>胞核>胞液,TPK为胞核>膜性>胞液。EBV和EBV+TPA再感染CNE-2Z细胞后,抑制细胞增殖,同时胞液PKC和TPK活性升高,膜性和胞核TPK和膜性PKC活性降低。本研究结果提示,EBV可能通过影响不同细胞组分中PKC和TPK活性来调节CNE-2Z鼻咽癌细胞的增殖。  相似文献   

19.
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号