首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 microM CaM was about 10 microg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly-L-Arg could partially substitute for poly(Lys), but protamine, spermine, and poly-L-Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The 32P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr44. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca2+/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM.  相似文献   

2.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

3.
The effect of phosphorylation of calcineurin on calmodulin (CaM) binding was examined using a synthetic peptide which contains the CaM-binding domain and the serine phosphorylation site. The peptide, corresponding to residues 391-414 of brain calcineurin A subunit, was rapidly phosphorylated by protein kinase C and Ca2+/CaM-dependent protein kinase II but not by cAMP-dependent protein kinase. Phosphorylation of peptide 391-414 did not significantly alter the binding of CaM when compared to the non-phosphorylated peptide.  相似文献   

4.
Protein kinase C incorporates phosphate into two sites of myosin light chain kinase (MLC-kinase) in the absence of calmodulin. Phosphorylation is all but abolished in the presence of Ca2+ and calmodulin, suggesting that both sites of phosphorylation are close to the calmodulin binding site. The phosphorylation of MLC-kinase results in an approximately 10-fold increase in the dissociation constant of MLC-kinase for calmodulin. Following phosphorylation (2 mol/mol of enzyme) of MLC-kinase by protein kinase C, an additional 2 mol of phosphate can be incorporated into the MLC-kinase apoenzyme by the cAMP-dependent protein kinase. Different maps of phosphopeptides were obtained by tryptic hydrolysis from MLC-kinase preparations phosphorylated by each kinase. The phosphorylation sites for the cAMP-dependent kinase were located in a fragment of approximately 25,000 daltons. In contrast the phosphorylation sites for protein kinase C are found in a much smaller tryptic peptide. These results suggest that the phosphorylation sites on MLC-kinase are different for protein kinase C and for cAMP-dependent protein kinase. However, phosphorylation in both regions results in a reduced affinity for calmodulin.  相似文献   

5.
The 63-kDa subunit, but not the 60-kDa subunit, of brain calmodulin-dependent cyclic nucleotide phosphodiesterase was phosphorylated in vitro by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. When calmodulin was bound to the phosphodiesterase, 1.33 +/- 0.20 mol of phosphate was incorporated per mol of the 63-kDa subunit within 5 min with no significant effect on enzyme activity. Phosphorylation in the presence of low concentrations of calmodulin resulted in a phosphorylation stoichiometry of 2.11 +/- 0.21 and increased about 6-fold the concentration of calmodulin necessary for half-maximal activation of the phosphodiesterase. Peptide mapping analyses of complete tryptic digests of the 63-kDa subunit revealed two major (P1, P4) and two minor (P2, P3) 32P-peptides. Calmodulin-binding to the phosphodiesterase almost completely inhibited phosphorylation of P1 and P2 with reduced phosphorylation rates of P3 and P4, suggesting the affinity change of the enzyme for calmodulin may be caused by phosphorylation of P1 and/or P2. When Ca2+/calmodulin-dependent protein kinase II was added without prior autophosphorylation, there was no phosphorylation of the 63-kDa phosphodiesterase subunit or of the kinase itself in the presence of a low concentration of calmodulin, and with excess calmodulin the phosphodiesterase subunit was phosphorylated only at P3 and P4. Thus the 63-kDa subunit of phosphodiesterase has a regulatory phosphorylation site(s) that is phosphorylated by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II and blocked by Ca2+/calmodulin binding to the subunit.  相似文献   

6.
L-Thyroxine (T4) and L-triiodothyronine (T3) specifically, inhibited myosin light chain kinase (MLC-kinase) from various tissues whereas inhibitory effects of T4 and T3 on other protein kinases such as protein kinase C, cAMP-dependent protein kinase, casein kinase I, casein kinase II and calmodulin kinase II were much weaker. T4 was a more potent inhibitor of MLC-kinase than T3. Kinetic studies showed that T4 behaved as a competitive inhibitor of MLC-kinase toward calmodulin (CaM) and that Ki value was 2.5 microM. The activity of the catalytic fragment of MLC-kinase, which is active without CaM, was not inhibited by T4. 125I-T4 gel overlay revealed that CaM did not bind T4 but MLC-kinase had 125I-T4 binding activity. These observations suggest that T4 binds at or near CaM binding domain of MLC-kinase and inhibits CaM-induced activation of MLC-kinase.  相似文献   

7.
Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 microM. Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 microM) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis. CaMK 281-309 strongly inhibited kinase activity (IC50 = 0.2 microM). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

8.
Phospholamban, the putative regulatory proteolipid of the Ca2+/Mg2+ ATPase in cardiac sarcoplasmic reticulum, was selectively phosphorylated by a Ca2+/calmodulin (CaM)-dependent protein kinase associated with a cardiac membrane preparation. This kinase also catalyzed the phosphorylation of two exogenous proteins known to be phosphorylated by the multifunctional Ca2+/CaM-dependent protein kinase II (Ca2+/CaM-kinase II), i.e., smooth muscle myosin light chains and glycogen synthase a. The latter protein was phosphorylated at sites previously shown to be phosphorylated by the purified multifunctional Ca2+/CaM-kinase II from liver and brain. The membrane-bound kinase did not phosphorylate phosphorylase b or cardiac myosin light chains, although these proteins were phosphorylated by appropriate, specific calmodulin-dependent protein kinases added exogenously. In addition to phospholamban, several other membrane-associated proteins were phosphorylated in a calmodulin-dependent manner. The principal one exhibited a Mr of approximately 56,000, a value similar to that of the major protein (57,000) in a partially purified preparation of Ca2+/CaM-kinase II from the soluble fraction of canine heart that was autophosphorylated in a calmodulin-dependent manner. These data indicate that the membrane-bound, calmodulin-dependent protein kinase that phosphorylates phospholamban in cardiac membranes is not a specific calmodulin-dependent kinase, but resembles the multifunctional Ca2+/CaM-kinase II. Our data indicate that this kinase may be present in both the particulate and soluble fractions of canine heart.  相似文献   

9.
Calcium/calmodulin (CaM)-dependent protein kinase II (CaM-kinase II) contained within the postsynaptic density (PSD) was shown to become partially Ca2+-independent following initial activation by Ca2+/CaM. Generation of this Ca2+-independent species was dependent upon autophosphorylation of both subunits of the enzyme in the presence of Mg2+/ATP/Ca2+/CaM and attained a maximal value of 74 +/- 5% of the total activity within 1-2 min. Subsequent to the generation of this partially Ca2+-independent form of PSD CaM-kinase II, addition of EGTA to the autophosphorylation reaction resulted in further stimulation of 32PO4 incorporation into both kinase subunits and a loss of stimulation of the kinase by Ca2+/CaM. Examination of the sites of Ca2+-dependent autophosphorylation by phosphoamino acid analysis and peptide mapping of both kinase subunits suggested that phosphorylation of Thr286/287 of the alpha- and beta-subunits, respectively, may be responsible for the transition of PSD CaM-kinase II to the Ca2+-independent species. A synthetic peptide 281-309 corresponding to a portion of the regulatory domain (residues 281-314) of the soluble kinase inhibited syntide-2 phosphorylation by the Ca2+-independent form of PSD CaM-kinase II (IC50 = 3.6 +/- 0.8 microM). Binding of Ca2+/CaM to peptide 281-309 abolished its inhibitory property. Phosphorylation of Thr286 in peptide 281-309 also decreased its inhibitory potency. These data suggest that CaM-kinase II in the PSD possesses regulatory properties and mechanisms of activation similar to the cytosolic form of CaM-kinase II.  相似文献   

10.
Chicken cardiac C-protein was readily phosphorylated by purified calcium/calmodulin-dependent protein kinase II (CaM-kinase II). Maximum incorporation was about 4 mol of 32P/mol of C-protein subunit. Peptide mapping indicated that some of the sites phosphorylated by CaM-kinase II were located on the same phosphopeptides obtained when C-protein was phosphorylated by the cAMP-dependent protein kinase (peptides T1, T2, and T3). There was a fourth peptide (T3a) which was unique to CaM-kinase II phosphorylation. 32P-Amino acid analysis showed that essentially all of the 32P of peptides T1, T2, and T3a was in phosphoserine. cAMP-dependent protein kinase incorporated 32P only into threonine of peptide T3. Threonine was the preferred site of phosphorylation by CaM-kinase II, but there was significant phosphorylation of a serine in peptide T3. Partially purified C-protein preparations contained an associated calcium/calmodulin-dependent protein kinase. Peptide maps obtained from C-protein phosphorylated by the endogenous kinase were similar to those obtained from C-protein phosphorylated by CaM-kinase II. However, the ratio of phosphothreonine to phosphoserine in peptide T3 was lower. This was due to a contaminating phosphatase in the partially purified C-protein which preferentially dephosphorylated the phosphothreonine of peptide T3. It is suggested that the calcium/calmodulin-dependent protein kinase associated with C-protein is similar or identical to CaM-kinase II and that CaM-kinase II may play a role in the phosphorylation of C-protein in the heart.  相似文献   

11.
Regulatory mechanisms of rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) were probed using a synthetic peptide (CaMK-(281-309] corresponding to residues 281-309 (alpha-subunit) which contained the calmodulin (CaM)-binding and inhibitory domains and also the initial autophosphorylation site (Thr286). Kinetic analyses indicated that inhibition of a completely Ca2+/CaM-independent form of CaM-kinase II by CaMK-(281-309) was noncompetitive with respect to peptide substrate (syntide-2) but was competitive with respect to ATP. Interaction of CaMK-(281-309) with the ATP-binding site was independently confirmed since inactivation of proteolyzed CaM-kinase II by phenylglyoxal (t1/2 = 7 min) was blocked by ATP analog plus Mg2+ or by CaMK-(281-309). In the presence of Ca2+/CaM, CaMK-(281-309) no longer protected against phenylglyoxal inactivation, consistent with our previous observations (Colbran, R.J., Fong, Y.-L., Schworer, C.M., and Soderling, T.R. (1988) J. Biol. Chem. 263, 18145-18151) that binding of Ca2+/CaM to CaMK-(281-309) 1) blocks its inhibitory property, and 2) enhances its phosphorylation at Thr 286. The present study also showed that phosphorylation of CaMK-(281-309) decreased its inhibitory potency at least 10-fold without affecting its Ca2+/CaM-binding ability. Thus, CaM-kinase II is inactive in the absence of Ca2+/CaM because an inhibitory domain within residues 281-309 interacts with the catalytic domain and blocks ATP binding. Autophosphorylation of Thr286 results in a Ca2+/CaM-independent form of the kinase by disrupting the inhibitory interaction with the catalytic domain.  相似文献   

12.
1-[N,O-Bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpipera zine (KN-62), a selective inhibitor of rat brain Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM kinase II) was synthesized and its inhibitory properties in vitro and in vivo were investigated. KN-62 inhibited phosphorylation of exogenous substrate (chicken gizzard myosin 20-kDa light chain) by Ca2+/CaM kinase II with Ki value of 0.9 microM, but no significant effect up to 100 microM on activities of chicken gizzard myosin light chain kinase, rabbit brain protein kinase C, and bovine heart cAMP-dependent protein kinase type II. KN-62 also inhibited the Ca2+/calmodulin-dependent autophosphorylation of both alpha (50 kDa) and beta (60 kDa) subunits of Ca2+/CaM kinase II dose dependently in the presence or absence of exogenous substrate. Kinetic analysis indicated that this inhibitory effect of KN-62 was competitive with respect to calmodulin. However, KN-62 did not inhibit the activity of autophosphorylated Ca2+/CaM kinase II. Moreover, Ca2+/CaM kinase II bound to a KN-62-coupled Sepharose 4B column, but calmodulin did not. These results suggest that KN-62 affects the interaction between calmodulin and Ca2+/CaM kinase II following inhibition of this kinase activity by directly binding to the calmodulin binding site of the enzyme but does not affect the calmodulin-independent activity of already autophosphorylated (activated) enzyme. We examined the effect of KN-62 on cultured PC12 D pheochromocytoma cells. KN-62 suppressed the A23187 (0.5 microM)-induced autophosphorylation of the 53-kDa subunit of Ca2+/CaM kinase in PC12 D cells, which was immunoprecipitated with anti-rat forebrain Ca2+/CaM kinase II polypeptides antibodies coupled to Sepharose 4B, thereby suggesting that KN-62 could inhibit the Ca2+/CaM kinase II activity in vivo.  相似文献   

13.
Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase.  相似文献   

14.
The kinetic reaction mechanism of calmodulin (CaM)-dependent protein kinase II (CaM-kinase II), including the regulatory mechanism by CaM, was studied by using microtubule-associated protein 2 (MAP2) as substrate under steady-state conditions. The detailed kinetic analyses of the phosphorylation of MAP2 and its inhibitions by the reaction products and by an ATP analogue, 5'-adenylylimidodiphosphate, revealed the rapid-equilibrium random mechanism. In the absence of Ca2+, CaM-kinase II was inactivated by incubation with ATP. The inactivation rate was dependent on the concentrations of ATP and MAP2, suggesting that these substrates can bind to the enzyme even in the absence of Ca2+/CaM. The activation of the enzyme by CaM reached the maximum when about 10 mol of CaM bound to 1 mol of CaM-kinase II, indicating the stoichiometry of the binding of one CaM to one subunit of the enzyme. The enzyme activity as a function of the concentration of CaM showed a sigmoidal curve. The concentration of CaM required for the half-maximal activation was dependent on the concentration of ATP at a fixed concentration of MAP2, although the Hill coefficient was unaffected by the concentration of ATP. A possible reaction mechanism of CaM-kinase II, including the phosphorylation of MAP2 by the enzyme and the binding of CaM to the enzyme, is discussed.  相似文献   

15.
The relationship of the kinase which co-purifies with caldesmon to Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) was investigated by studying the phosphorylation of bovine brain synapsin I, as well-characterized substrate of CaM-kinase II. Synapsin I is a very good substrate (Km = 90 nM) of the co-purifying kinase, which phosphorylates two sites in synapsin I, both of which are distinct from the single site phosphorylated by cyclic-AMP-dependent protein kinase. Phosphorylation of synapsin I is Ca2(+)- and calmodulin-dependent: half-maximal activation occurs at 0.13 microM-Ca2+ and maximal activity at 0.4 microM-Ca2+. Phosphorylation of the co-purifying kinase slightly enhances the rate, but does not alter the stoichiometry, of subsequent synapsin I phosphorylation; it does, however, circumvent the requirement for Ca2+ and calmodulin. The properties of this kinase therefore closely resemble those of CaM-kinase II, and we conclude that it is probably a smooth-muscle isoenzyme of CaM-kinase II.  相似文献   

16.
Phosphofructokinase (PFK) from sheep heart was shown to be phosphorylated by Ca2+/calmodulin protein kinase (CaM-kinase) as well as by cyclic AMP-dependent protein kinase (PKA). HPLC analysis of phosphorylated PFK indicated that phosphorylation by CaM-kinase occurs at least at two sites that are distinct from those recognized by PKA. Phosphorylation by either CaM-kinase of PKA resulted in an increase in sensitivity to ATP inhibition and a small but consistent decrease in Ki for ATP. Phosphorylation by either protein kinase caused a slight increase in the Km of PFK for fructose-6-P. Protein kinase C failed to phosphorylate PFK. Combinations of PKA, CaM-kinase and protein kinase C did not alter the stoichiometry of phosphorylation and did not change the effect on enzyme activity.  相似文献   

17.
Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) I and IV are activated upon phosphorylation of their Thr(177) and Thr(196), respectively, by the upstream Ca(2+)/calmodulin-dependent protein kinases CaM-kinase kinase alpha and beta, and deactivated upon dephosphorylation by protein phosphatases such as CaM-kinase phosphatase. Recent studies demonstrated that the activity of CaM-kinase kinase alpha is decreased upon phosphorylation by cAMP-dependent protein kinase (PKA), and the relationship between the inhibition and phosphorylation of CaM-kinase kinase alpha by PKA has been studied. In the present study, we demonstrate that the activity of CaM-kinase kinase alpha toward PKIV peptide, which contains the sequence surrounding Thr(196) of CaM-kinase IV, is increased by incubation with PKA in the presence of Ca(2+)/calmodulin but decreased in its absence, while the activity toward CaM-kinase IV is decreased by incubation with PKA in both the presence and absence of Ca(2+)/calmodulin. Six phosphorylation sites on CaM-kinase kinase alpha, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA, were identified by amino acid sequence analysis of the phosphopeptides purified from the tryptic digest of the phosphorylated enzymes. The presence of Ca(2+)/calmodulin suppresses phosphorylation on Ser(52), Ser(74), Thr(108), and Ser(458) by PKA, but accelerates phosphorylation on Ser(475). The changes in the activity of the enzyme upon phosphorylation appear to occur as a result of conformational changes induced by phosphorylation on several sites.  相似文献   

18.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   

19.
Abstract: Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 μ M . Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 μ M ) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis, CaMK 281-309 strongly inhibited kinase activity (IC50=0.2 μ M ). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

20.
Previous studies have purified from brain a Ca2+/calmodulin-dependent protein kinase II (designated CaM-kinase II) that phosphorylates synapsin I, a synaptic vesicle-associated phosphoprotein. CaM-kinase II is composed of a major Mr 50K polypeptide and a minor Mr 60K polypeptide; both bind calmodulin and are phosphorylated in a Ca2+/calmodulin-dependent manner. Recent studies have demonstrated that the 50K component of CaM-kinase II and the major postsynaptic density protein (mPSDp) in brain synaptic junctions (SJs) are virtually identical and that the CaM-kinase II and SJ 60K polypeptides are highly related. In the present study the photoaffinity analog [alpha-32P]8-azido-ATP was used to demonstrate that the 60K and 50K polypeptides of SJ-associated CaM-kinase II each bind ATP in the presence of Ca2+ plus calmodulin. This result is consistent with the observation that these proteins are phosphorylated in a Ca2+/calmodulin-dependent manner. Experiments using 32P-labeled peptides obtained by limited proteolysis of 60K and 50K polypeptides from SJs demonstrated that within each kinase polypeptide the same peptide regions contain both autophosphorylation and 125I-calmodulin binding sites. These results suggested that the autophosphorylation of CaM-kinase II could regulate its capacity to bind calmodulin and, thus, its capacity to phosphorylate substrate proteins. By using 125I-calmodulin overlay techniques and sodium dodecyl sulfate-polyacrylamide gel electrophoresis we found that phosphorylated 50K and 60K CaM-kinase II polypeptides bound more calmodulin (50-70%) than did unphosphorylated kinase polypeptides. Levels of in vitro CaM-kinase II activity in SJs were measured by phosphorylation of exogenous synapsin I. SJs containing highly phosphorylated CaM-kinase II displayed greater activity in phosphorylating synapsin I (300% at 15 nM calmodulin) relative to control SJs that contained unphosphorylated CaM-kinase II. The CaM-kinase II activity in phosphorylated SJs was indistinguishable from control SJs at saturating calmodulin concentrations (300-1,000 nM). These findings show that the degree of autophosphorylation of CaM-kinase II in brain SJs modulates its in vitro activity at low and possibly physiological calmodulin concentrations; such a process may represent a mechanism of regulating this kinase's activity at CNS synapses in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号