首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J A Tan  J A Cowan 《Biochemistry》1990,29(20):4886-4892
A high molecular weight multiheme c-type cytochrome from the sulfate-reducing bacterium Desulfovibrio vulgaris (Hildenborough) has been spectroscopically characterized and compared with the tetraheme cytochrome c3. The protein contains a pentacoordinate high-spin heme (gz 6.0) and two hexacoordinate low-spin hemes (gz 2.95, gy 2.27, gx 1.48). From analysis of the g values for the low-spin hemes by the procedure of Blumberg and Peisach (Palmer, 1983) and comparison with with the optical spectra from a variety of c-type cytochromes, it is likely that these low-spin hemes are bound by two histidine residues. The NO derivative displayed typical rhombic EPR features (gx 2.07, gz 2.02, gy 1.99). Addition of azide does not lead to coupling between heme chromophores, but the ligand is accessible to the high-spin heme. The use of a glassy-carbon electrode to perform direct (no promoter) electrochemistry on the cytochrome is illustrated. Differential pulse polarography of the native protein gave two waves with reduction potentials of -59 (5) and -400 (8) mV (versus NHE). The cyanide adduct gave two waves with reduction potentials of -263 (8) and -401 (8) mV. The cytochrome was found to catalyze the reduction of nitrite and hydroxylamine.  相似文献   

2.
The heterodimeric hemoprotein SoxXA, essential for lithotrophic sulfur oxidation of the aerobic bacterium Paracoccus pantotrophus, was examined by a combination of spectroelectrochemistry and EPR spectroscopy. The EPR spectra for SoxXA showed contributions from three paramagnetic heme iron centers. One highly anisotropic low-spin (HALS) species (gmax = 3.45) and two "standard" cytochrome-like low-spin heme species with closely spaced g-tensor values were identified, LS1 (gz = 2.54, gy = 2.30, and gx = 1.87) and LS2 (gz = 2.43, gy = 2.26, and gx = 1.90). The crystal structure of SoxXA from P. pantotrophus confirmed the presence of three heme groups, one of which (heme 3) has a His/Met axial coordination and is located on the SoxX subunit [Dambe et al. (2005) J. Struct. Biol. 152, 229-234]. This heme was assigned to the HALS species in the EPR spectra of the isolated SoxX subunit. The LS1 and LS2 species were associated with heme 1 and heme 2 located on the SoxA subunit, both of which have EPR parameters characteristic for an axial His/thiolate coordination. Using thin-layer spectroelectrochemistry the midpoint potentials of heme 3 and heme 2 were determined: Em3 = +189 +/- 15 mV and Em2 = -432 +/- 15 mV (vs NHE, pH 7.0). Heme 1 was not reducible even with 20 mM titanium(III) citrate. The Em2 midpoint potential turned out to be pH dependent. It is proposed that heme 2 participates in the catalysis and that the cysteine persulfide ligation leads to the unusually low redox potential (-436 mV). The pH dependence of its redox potential may be due to (de)protonation of the Arg247 residue located in the active site.  相似文献   

3.
Electronic absorption and electron paramagnetic resonance (EPR) spectroscopic examinations revealed that a freshly prepared cytochrome c peroxidase (CCP) contains a penta-coordinated high spin ferric protoheme group. The penta-coordinated high spin state of fresh CCP is maintained in a remarkably wide range of pH (4-8). The freezing of fresh CCP induces the reversible coordination of an internal strong field ligand to the heme iron to form a hexa-coordinated low spin compound, which shows EPR extrema at gx = 2.70, gy = 2.20 and gz = 1.78. In the presence of glycerol the freezing-induced artifacts are eliminated and the fresh enzyme exhibits an EPR spectrum of rhombically distorted axial symmetry with EPR extrema at gx = 6.4, gy = 5.3, and gz = 1.97 at 10 K, characteristic of the penta-coordinated high spin enzyme. Upon aging CCP is converted to a hexa-coordinated high spin state due to the coordination of an internal weak field ligand to the heme iron. This conversion is accelerated at acidic pH values, and its reversibility varies from fully reversible to irreversible depending on the degree of enzyme aging. The aging-induced hexa-coordinated CCP is unreactive with hydrogen peroxide and exhibits an EPR spectrum of purely axial symmetry with extrema at g = 6 and g = 2 and an electronic absorption spectrum with an intensified Soret band at 408 nm (epsilon 408 nm = 120 mM-1 cm-1) and a blue-shifted charge-transfer band at 620 nm. Spectroscopic properties of different coordination and spin states of fresh and aged CCPs are compiled in order to formulate a generalized spectroscopic characterization of penta- and hexa-coordinated high spin ferric hemoproteins.  相似文献   

4.
The purified cytochrome aa3-type oxidase from Sulfolobus acidocaldarius (DSM 639) consists of a single subunit, containing one low-spin and one high-spin A-type hemes and copper [Anemüller, S. and Sch?fer, G. (1990) Eur. J. Biochem. 191, 297-305]. The enzyme metal centers were investigated by electron paramagnetic resonance spectroscopy (EPR), coupled to redox potentiometry. The low-spin heme EPR signal has the following g-values: gz = 3.02, gy = 2.23 and gx = 1.45 and the high-spin heme exhibits an almost axial spectrum (gy = 6.03 and gx = 5.97, E/D < 0.002). In the enzyme as isolated the low-spin resonance corresponds to 95 +/- 10% of the enzyme concentration, while the high-spin signal accounts for only 40 +/- 5%. However, taking into account the redox potential dependence of the high-spin heme signal, this value also rises to 95 +/- 10%. The high-spin heme signal of the Sulfolobus enzyme shows spectral characteristics distinct from those of the Paracoccus denitrificans one: it shows a smaller rhombicity (gy = 6.1 and gx = 5.9, E/D = 0.004 for the P. denitrificans enzyme) and it is easier to saturate, having a half saturation power of 148 mW compared to 360 mW for the P. denitrificans protein, both at 10 K. The EPR spectrum of an extensively dialyzed and active enzyme sample containing only one copper atom/enzyme molecule does not display CuA-like resonances, indicating that this enzyme contains only a CUB-type center. The EPR-redox titration of the high-spin heme signal, which is assigned to cytochrome a3, gives a bell shaped curve, which was simulated by a non-interactive two step redox process, with reduction potentials of 200 +/- 10 mV and 370 +/- 10 mV at pH = 7.4. The decrease of the signal amplitude at high redox potentials is proposed to be due to oxidation of a CUB(I) center, which in the CUB(II) state is tightly spin-coupled to the heme a3 center. The reduction potential of the low-spin resonance was determined using the same model as 305 +/- 10 mV at pH = 7.4 by EPR redox titration. Addition of azide to the enzyme affects only the high-spin heme signal, consistent with the assignment of this resonance to heme a3. The results are discussed in the context of the redox center composition of quinol and cytochrome c oxidases.  相似文献   

5.
1.Upon addition of sulphide to oxidized cytochrome c oxidase, a low-spin heme sulphide compound is formed with an EPR signal at gx = 2.54, gy = 2.23 and gz = 1.87. Concomitantly with the formation of this signal the EPR-detectable low-spin heme signal at g = 3 and the copper signal near g = 2 decrease in intensity, pointing to a partial reduction of the enzyme by sulphide. 2. The addition of sulphide to cytochrome c oxidase, previously reduced in the presence of azide or cyanide, brings about a disappearance of the azido-cytochrome c oxidase signal at gx = 2.9, gy = 2.2, and gz = 1.67 and a decrease of the signal at g = 3.6 of cyano-cytochrome c oxidase. Concomitantly the sulphide-induced EPR signal is formed. 3. These observations demonstrate that azide, cyanide and sulphide are competitive for an oxidized binding site on cytochrome c oxidase. Moreover, it is shown that the affinity of cyanide and sulphide for this site is greater than that of azide.  相似文献   

6.
The EPR spectrum at 15 K of Pseudomonas cytochrome c peroxidase, which contains two hemes per molecule, is in the totally ferric form characteristic of low-spin heme giving two sets of g-values with gz 3.26 and 2.94. These values indicate an imidazole-nitrogen : heme-iron : methionine-sulfur and an imidazole-nitrogen : heme-iron : imidazole-nitrogen hemochrome structure, respectively. The spectrum is essentially identical at pH 6.0 and 4.6 and shows only a very small amount of high-spin heme iron (g 5--6) also at 77 K. Interaction between the two hemes is shown to exist by experiments in which one heme is reduced. This induces a change of the EPR signal of the other (to gz 2.83, gy 2.35 and gx 1.54), indicative of the removal of a histidine proton from that heme, which is axially coordinated to two histidine residues. If hydrogen peroxide is added to the partially reduced protein, its EPR signal is replaced by still other signals (gz 3.5 and 3.15). Only a very small free radical peak could be observed consistent with earlier mechanistic proposals. Contrary to the EPR spectra recorded at low temperature, the optical absorption spectra of both totally oxidized and partially reduced enzyme reveal the presence of high-spin heme at room temperature. It seems that a transition of one of the heme c moieties from an essentially high-spin to a low-spin form takes place on cooling the enzyme from 298 to 15 K.  相似文献   

7.
The g values from low-spin ferric hemes can be related through the t2g hole model to rhombic (V/lambda) and tetragonal (delta/lambda) ligand field components and to the lowest Kramer's doublet energy (E/lambda). The latter is also a measure of unpaired electron sharing among the iron 3d (t2g) orbitals. For a series of ligands (X), there is a monotonic increase in myoglobin complex (Mb . X) [E/lambda] values with nonheme hexacoordinate metal complex (M . X6) [eg-t2gPg] orbital separations. As the aqueous solution pKa values of the sulfurous or nitrogenous ligands in model heme complexes increase, values of V/lambda and delta/lambda increase linearly, but those of [E/lambda] decrease linearly. The greater the electron-acceptor ability of the ligand, as suggested by its position in the spectrochemical series or its pKa, the more the unpaired electron sharing among the heme t2g orbitals increases. The rate of change of [E/lambda] with V/lambda and the pKa is different with sulfurous and nitrogenous ligands, and the magnitude of both rates increases with two sulfurs less than sulfur and nitrogen less than two nitrogens bound to the heme. The maximum magnitude of this rate with V/lambda for cytochrome P-450 is four times less than that for myoglobin, which may explain, in part, the differences in ligand binding between these two hemeproteins. The perturbation of [E/lambda], V/lambda, and delta/lambda induced by strain of iron-ligand bonds is quantitated for several hemeproteins and heme models. In addition, energy level comparisons suggest that the largest-magnitude g value falls approximately along the iron-chlorin ring normal. This suggestion implies that the electron distribution of the iron at the catalytic sites of cytochrome P-450 and certain chlorin-containing enzymes is in some way similar, but distinct from that at the transport site of myoglobin.  相似文献   

8.
Indoleamine 2,3-dioxygenase. Purification and some properties.   总被引:20,自引:0,他引:20  
Indoleamine 2,3-dioxygenase was purified from rabbit small intestine to apparent homogeneity as judged by polyacrylamide gel electrophoresis and analytical ultracentrifugation. The native enzyme was a monomeric protein of a molecular weight of 41,000 +/- 1,000 with an s020,w value of 3.45 S. It had a relative abundance of hydrophobic amino acids such as valine, leucine, and isoleucine, and contained approximately 5% carbohydrate by weight. The estimated content of sugar residues per mol of enzyme was: galactose, 1.2; mannose, 2.6; N-acetylglucosamine, 5.2; and sialic acid, 0.8. One mole of enzyme had 0.8 mol of protoheme IX as a prosthetic group. However, copper was not detected in a significant amount and the ratio of copper to heme was less than 0.03. EPR spectra of the nitric oxide complex of the ferrous enzyme indicated that a nitrogen atom, possibly in an imidazole group, might be coordinated as the fifth ligand of the heme coenzyme. The anisotropic g values were gx = 2.08, gy = 1.98, and gz = 2.01. A single enzyme protein catalyzed the oxygenative ring cleavage of D- and L-tryptophan, D- and L-5-hydroxytryptophan, tryptamine, and serotonin. In addition, the purified enzyme had a peroxidase activity with guaiacol and potassium iodide as hydrogen donors, but not a catalase activity.  相似文献   

9.
Purified prostaglandin H synthase (EC 1.14.99.1) apoprotein, a polypeptide of 72 kDA, was titrated with hemin and EPR spectra of high-spin ferric heme were observed at liquid-helium temperature. With up to one hemin per polypeptide, a signal at g = 6.6 and 5.4, rhombicity 7.5%, evolved owing to specifically bound, catalytic active heme. At higher heme/polypeptide ratios signals at g = 6.3 and 5.9 were observed which were assigned to non-specific heme with no catalytic function. In microsomes from ram seminal vesicles the native enzyme showed the signal at g = 6.7 and 5.2 which could not be increased by the addition of hemin. Cyanide, an inhibitor of the enzyme, reacted at lower concentrations with the specific heme abolishing its signal at g = 6.6 and 5.4. Higher concentrations of cyanide were needed for the disappearance of the signal of non-specific heme. The reduced enzyme reacted with NO and formed two types of NO complexes. A transient complex, with a rhombic signal at gx = 2.07, gz = 2.01 and gy = 1.97, was assigned to a six-coordinate complex. The final, stable complex showed an axial signal at g = 2.12 and g = 2.001 and was assigned to a five-coordinate complex, where the protein ligand was no longer bound to the heme iron. Neither type of signal showed a hyperfine splitting from nitrogen of histidine indicating the absence of a histidine-iron bond in the enzyme. From these results and the similarity of the EPR signal at g = 6.6 and 5.4 to the signal of native catalase (EC 1.11.1.6) we speculated that tyrosinate might be the endogenous ligand of the heme in prostaglandin H synthase.  相似文献   

10.
1. Ferricytochrome c3 from D. gigas exhibits two low-spin ferric heme EPR resonances with gz-values at 2.959 and 2.853. Ferrocytochrome c3 is diamagnetic based on the absence of any EPR signals. 2. EPR potentiometric titrations result in the resolution of the two low-spin ferric heme resonances into two additional heme components representing in total the four hemes of the cytochrome, with EM values of -235 mV and -315 mV at heme resonance I and EM values of -235 mV and -306 mV at heme resonance II. 3. EPR spectroscopy has detected a significant diminution of intensity (approx. 60 p. 100) in the gx amplitude of ferricytochrome c3 in the presence of D. gigas ferredoxin II. The presence of ferredoxin II also causes a more negative shift in the EM of the second components of the signals at heme resonances I and II of cytochrome C3. Both observations suggest that an interaction has occurred between cytochrome C3 and ferredoxin II. 4. The results presented suggest that the heme ligand environment of ferricytochrome c3 from D. gigas is less perturbed and/or less asymmetric than environment for ferricytochrome c3 from D. vulgaris whose EPR behavior indicates the non-equivalence of all four hemes.  相似文献   

11.
EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Y Feng  H Roder  S W Englander 《Biochemistry》1990,29(14):3494-3504
Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences (delta delta) for structure change, we removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor parameters were determined from the delta delta values of a large set (64) of C alpha H protons at well-defined spatial positions in the oxidized horse protein. The g-tensor calculation, when repeated using only 12 available C alpha H proton resonances for cytochrome c from tuna, proved to be remarkably stable. The largest principal value of the g tensor (gz) falls precisely along the ligand bond between the heme iron and methionine-80 sulfur, while gx and gy closely match the natural heme axes defined by the pyrrole nitrogens. The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution (delta pc) to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, delta delta-delta pc, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, which are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. Smaller chemical shift discrepancies point to a concerted change, involving residues 39-43 and 50-60 (bottom of the protein), and to other changes in the immediate vicinity of the heme ligands. Also, the three internal water molecules are implicated in redox sensitivity. The residues found to change are in good but not perfect agreement with prior X-ray diffraction observations of subangstrom redox-related displacements in the tuna protein. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impression is one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.  相似文献   

13.
1. The reaction of myeloperoxidase with fluoride, chloride and azide has been studied by EPR. 2. Fluoride decreases the rhombicity of the high-spin heme signal of myeloperoxidase and the nuclear spin of the fluoride atom induces a splitting in g parallel of 35 G. This observation demonstrates that fluoride binds as an axial ligand to the heme iron of the enzyme. 3. Addition of chloride to the fluoride-treated enzyme increases the rhombicity of the high-spin heme signal and brings about a disappearance of the splitting at g parallel. The addition of azide to the fluoride-treated enzyme changes the spin state of the heme iron from a high-to a low-spin state (gx = 2.68, gy = 2.22 and gz = 1.80). 4. Upon addition of chloride or fluoride to low-spin azido-myeloperoxidase this compound is converted into the high-spin chlorido- or fluorido-myeloperoxidase. These observations demonstrate that these ligands compete for a binding site at or close to the heme iron of myeloperoxidase.  相似文献   

14.
The caa3-oxidase from Thermus thermophilus has been studied with a combined electrochemical, UV/VIS and Fourier-transform infrared (FT-IR) spectroscopic approach. In this oxidase the electron donor, cytochrome c, is covalently bound to subunit II of the cytochrome c oxidase. Oxidative electrochemical redox titrations in the visible spectral range yielded a midpoint potential of -0.01 +/- 0.01 V (vs. Ag/AgCl/3m KCl, 0.218 V vs. SHE') for the heme c. This potential differs for about 50 mV from the midpoint potential of isolated cytochrome c, indicating the possible shifts of the cytochrome c potential when bound to cytochrome c oxidase. For the signals where the hemes a and a3 contribute, three potentials, = -0.075 V +/- 0.01 V, Em2 = 0.04 V +/- 0.01 V and Em3 = 0.17 V +/- 0.02 V (0.133, 0.248 and 0.378 V vs. SHE', respectively) could be obtained. Potential titrations after addition of the inhibitor cyanide yielded a midpoint potential of -0.22 V +/- 0.01 V for heme a3-CN- and of Em2 = 0.00 V +/- 0.02 V and Em3 = 0.17 V +/- 0.02 V for heme a (-0.012 V, 0.208 V and 0.378 V vs. SHE', respectively). The three phases of the potential-dependent development of the difference signals can be attributed to the cooperativity between the hemes a, a3 and the CuB center, showing typical behavior for cytochrome c oxidases. A stronger cooperativity of CuB is discussed to reflect the modulation of the enzyme to the different key residues involved in proton pumping. We thus studied the FT-IR spectroscopic properties of this enzyme to identify alternative protonatable sites. The vibrational modes of a protonated aspartic or glutamic acid at 1714 cm-1 concomitant with the reduced form of the protein can be identified, a mode which is not present for other cytochrome c oxidases. Furthermore modes at positions characteristic for tyrosine vibrations have been identified. Electrochemically induced FT-IR difference spectra after inhibition of the sample with cyanide allows assigning the formyl signals upon characteristic shifts of the nu(C=O) modes, which reflect the high degree of similarity of heme a3 to other typical heme copper oxidases. A comparison with previously studied cytochrome c oxidases is presented and on this basis the contributions of the reorganization of the polypeptide backbone, of individual amino acids and of the hemes c, a and a3 upon electron transfer to/from the redox active centers discussed.  相似文献   

15.
The electron-nuclear coupling in low-spin iron complexes including myoglobin hydroxide (MbOH) and two related model compounds, Fe(III) tetraphenylporphyrin(pyridine)(OR-) (R = H or CH3) and Fe(III) tetraphenylporphyrin(butylamine)(OR-) was investigated using electron spin echo envelope modulation (ESEEM) spectroscopy. The assignment of frequency components in ESEEM spectra was accomplished through the use of nitrogen isotopic substitution wherever necessary. For example, the proximal imidazole coupling in MbOH was investigated without interference from the contributions of porphyrin 14N nuclei after substitution of the heme in native Mb with 15N-labeled heme. Computer simulation of spectra using angle selected techniques enabled the assignment of parameters describing the hyperfine and quadrupole interactions for axially bound nitrogen of imidazole in MbOH, of axial pyridine and butylamine in the models, and for the porphyrin nitrogens of the heme in native MbOH. The isotropic component of axial nitrogen hyperfine interactions exhibits a trend from 5 to 4 MHz, with imidazole (MbOH) greater than pyridine greater than amine. The nuclear quadrupole interaction coupling constant e2Qq was near 2 MHz for all nitrogens in these complexes. The Qzz axis of the nuclear quadrupole interaction tensor for the proximal imidazole nitrogen in MbOH was found to be aligned near gz (gmax) in MbOH, suggesting that gz is near the heme normal. A crystal field analysis, that allows a calculation of rhombic and axial splittings for the d orbitals of the t2g set in a low-spin heme complex, based on the g tensor assignment gz greater than gy greater than gx, yielded results that are consistent with the poor pi-acceptor properties expected for the closed shell oxygen atom of the hydroxide ligand in MbOH. A discussion is presented of the unusual results reported in a linear electric field effect in EPR (LEFE) study of MbOH published previously [Mims, W. B., & Peisach, J. (1976) J. Chem. Phys. 64, 1074-1091].  相似文献   

16.
Spinach chloroplast membranes were oriented onto mylar sheets by partial dehydration, and the orientation of the magnetic axes of membrane-bound paramagnetic clusters determined by electron paramagnetic resonance (EPR) spectroscopy. Our results indicate that the reduced Rieske iron-sulfur cluster signal is of orthorhombic symmetry oriented with th gy = 1.90 axis orthogonal to the membrane plane and with the gz = 2.03 axis in the membrane plane; the gx-axis is undetectable, presumably due to its broadness. If the Rieske center is a two-iron iron-sulfur cluster, we conclude that the iron-iron axis lies in the plane of the membrane. Illumination reduces the two bound chloroplast iron-sulfur proteins known as Clusters A and B. Center A is oriented such that gx = 1.86 and gy = 1.94 lie at an angle of about 40, and gz = 2.05 is at approximately 25, to the membrane plane. There are two possible orientations of Cluster B depending on the set of g-values assigned to this cluster. For one set of g-values, gz = 2.04 and gx = 1.89 are oriented in the plane of the membrane while gy = 1.92 is orthogonal to the plane. Alternatively, gz = 2.07 and gy = 1.94 are oriented approximately 50 and 40 to the membrane plane respectively, and gx = 1.80 is in the plane of the membrane. An additional light-induced signal at g = 2.15 oriented orthogonal to the plane is currently unexplained, as are other membrane perpendicular signals seen at g = 2.3 and g = 1.73 in dark-adapted samples.  相似文献   

17.
It is well established that exposure of oxyhaemoglobin to ionizing radiation results in remarkably selective electron addition to the (FeO2) unit, giving a novel species, (FeO2)-, in which the extra electron is largely localized on iron and dioxygen. This work has now been extended to haemoglobin (Hb.) Iwate. The haemoglobin M. Iwate used is a mutant haemoglobin having only Fe(III) alpha-chains by oxy beta-chains (alpha 2 Met beta 2 oxy). The haem iron atoms in the alpha-chains are coordinated in the fifth site by a proximal tyrosine in place of histidine. This unit is a high-spin Fe(III) with axial symmetry and prominent electron spin resonance (ESR) features in the g = 6 and g = 2 regions. On exposure to 60Co gamma-rays at 77 K, efficient electron addition occurred at both types of iron centre, giving Fe(II) and (FeO2)- units. The former was monitored by the decrease of the g = 6 feature for Fe(III) and the latter by the growth of g-features at 2.254 (gx), 2.149 (gy) and 1.967 (gz). These values are close to those for the FeO2- centre formed in the beta-chains of normal oxyhaemoglobin. On annealing above 77 K, two changes occurred: first there was a small but clear increase in gx and gy, followed by a marked reduction in gx and gy giving g-values close to those for the centre formed directly in the alpha-chains of the normal protein. Finally, this intermediate species gave a centre having gx = 2.310, gy = 2.180 and gz = 1.935. These values are typical of low-spin Fe(III) haemoglobin and are assigned to the protonated complex, Fe(III)O2H. Ultimately at ca. room temperature, this was converted into the high-spin, met-form, with a gain in the g = 6 feature. These results established that the beta-chain centre in Hb. Iwate behave in the same way as isolated beta-chains. They also confirm that electron addition to the oxy-units is facile, even in the presence of Fe(III) units in each tetramer. The results also confirm that electron capture to give (FeO2)- units is not followed by internal electron-transfer to give Fe(II) from the Fe(III) centres in the alpha-chains.  相似文献   

18.
The archaebacterium, Pyrococcus furiosus, is a strict anaerobe that grows optimally at 100 degrees C by a fermentative-type metabolism in which H2 and CO2 are the only detectable products. Tungsten is known to stimulate the growth of this organism. A red-colored tungsten-containing protein (abbreviated RTP) that is redox-active and extremely thermostable has been purified. RTP is a monomer of Mr = 85,000 and contains approximately 6 iron, 1 tungsten, and 4 acid-labile sulfide atoms/molecule. Titrations using visible spectroscopy were consistent with the oxidation and reduction of the protein each requiring two electrons/molecule, suggesting that these metals and the sulfide are arranged in two redox active centers. P. furiosus ferredoxin served as an electron acceptor for the protein. Dithionite-reduced RTP exhibited a remarkable and complex EPR spectrum at 6 K with g values ranging from 1.3 to 10.0. This was shown to arise from the spin-coupling interaction of two paramagnetic centers. One (center A) has a S = 3/2 spin system (effective g values: gx = 3.33, gy = 4.75, and gz = 1.92, where D = 4.3 cm-1 and lambda = 0.135), whereas the EPR properties of the other (center B) could not be deduced. Nevertheless, theoretical analyses show how the redox properties of both centers may be determined using EPR spectroscopy. Their midpoint potentials (Em) at 20 degrees C and pH 8.0 are -410 mV (center A) and -500 mV (center B) with an effective potential for the spin coupled system (Em, A + B) of -505 mV. The Em values are dependent on temperature (delta Em/delta T = -2 mV/degrees C between 20 and 70 degrees C) and pH with pK alpha values of 8.0 (A) and approximately 8.5 (B). The Em values at 100 degrees C, the growth temperature, were estimated at -590, -650, and -660 mV for centers A, B, and A + B, respectively. These data indicate that RTP catalyzes a dehydrogenase-type reaction of extremely low potential, which involves the transfer of two protons and of two electrons, to and from two adjacent and interacting but nonidentical metal centers.  相似文献   

19.
(1) The EPR spectrum of Center 1 of NADH dehydrogenase in isolated Complex I or submitochondrial particles from beef heart consists of two overlapping nearly axial signals of the same intensity. They are defined as Center 1a (gll = 0.021, gl = 1.938) and Center 1b (gll = 2.021, gl = 1.928). (2) The line shape of the EPR spectrum of the Center 3+4 can be interpreted as an overlap of two rhombic signals of the same intensity. We define Center 3 by the g-values: gz=2.103, gy = 1.93-1.94, gx=1.884, and Center 4 by the values gz=2.04, gy=1.92-1.93, gx=1.863. (3) Direct quantitation of the individuals signals as well as computer stimulation suggests that the amount of the Centers 1a and 1b is only 25% of that of the other individuals centers and FMN. As EPR spectra of beef-heart submitochondrial particles at 10-20 K are nearly identical to those of Complex I, the same relative concentrations of the Fe-S centers are also present in the particles. (4) The signals either observed by us in EPR spectra of Complex I and submitochondrial particles at 4.2 K and high microwave powers can now be explained without assuming more than 5 paramagnetic centers in NADH dehydrogenase.  相似文献   

20.
The microenvironment of the iron in a sea turtle Dermochelys coriacea myoglobin is studied using the spectroscopic techniques EPR and optical absorption. Optical absorption spectra in the visible region suggest a great homology between turtle Mb and other myoglobins, such as those from whale, human and elephant. The pK of the acid-alkaline transition is 8.4 slightly lower than the pK of whale and equal to that of elephant myoglobin. The EPR spectrum at pH 7.0 is characteristic of a high-spin configuration with axial symmetry (gx = gy = 5.95). At higher pH, this signal changes in a way different from that observed for whale myoglobin. We observe for turtle Mb both the formation of a low-spin configuration with rhombic symmetry (gx = 2.56, gy = 2.20, gz = 1.90) and of a high-spin species with rhombic distortion (gx = 6.79, gy = 5.18, gz = 2.12). This suggests a lowering of symmetry at the haem, so that now the x and y directions are no more equivalent. This can be explained by amino acid substitution at the distal positions of haem or to off-axial positioning of distal residues. The coexistence at high pH (pH 11.0) of these two spin forms could be explained by the existence of two protein conformations, in which the crystal field splitting factor, delta, and the electron exchange energy are of the same order, allowing the presence of different configurations simultaneously. The presence of different kinds of haem is ruled out by the experiments with nitrosyl turtle Mb and turtle Mb-F showing spectra very similar to those of whale myoglobin. The pk of the acid-alkaline transition, 8.5, obtained from EPR spectra, agrees very well with results from optical absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号