首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits that integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye‐labeling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer‐specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

2.
The amphibian optic tectum and pretectum have been analyzed in detail anatomically and physiologically, and a specific model for tecto-pretectal interaction in the context of the visual guidance of behavior has been proposed. However, anatomical evidence for this model, particularly the precise pattern of pretecto-tectal connectivity, is lacking. Therefore, we stained pretectal neurons intracellularly in an in-vitro preparation of the salamanders Plethodon jordani and Hydromantes genei. Our results demonstrate that the projections of neurons of the nucleus praetectalis profundus are divergent and widespread. Individual neurons may project divergently to telencephalic (ipsilateral amygdala and striatum), diencephalic (ipsi-and contralateral thalamus, contralateral pretectum), and mesencephalic (ipsi- and contralateral tectum and tegmentum) centers, and to the ipsi- and contralateral medulla oblongata and rostral spinal cord. The projection of pretectal cells to the optic tectum is bilateral; axonal structures do not show discernible patterns and are present in all layers of the superficial white matter. A classification of pretectal neurons on the basis of axonal termination pattern or dendritic arborization has not been possible. Our results do not support the hypothesis that a distinct class of pretectal neurons projects to a particular subset of tectal cells. Rather, the pretectum appears to influence the tectum indirectly, acting either on retinal afferents or modulating inhibitory interneurons.  相似文献   

3.
Summary A comparison of the retinofugal projections in 14 species of plethodontid salamanders by means of the horseradish peroxidase (HRP) technique revealed almost identical contralateral projections. In all species studied three optic tracts were found. Behind the chiasma opticum the basal optic tract runs to the peduncle region, there forming the basal optic neuropil. The marginal optic tract courses from the chiasma over the thalamus to the tectum opticum where it covers the entire surface. In the anterior thalamus the marginal optic tract innervates the neuropil Bellonci-pars lateralis and the corpus geniculatum thalamicum, and more caudally the neuropil posterior thalami. The medial optic tract supplies the neuropil Bellonci-pars lateralis and pars medialis in the anterior thalamus from where it runs medial to the marginal optic tract as a separate tract to the uncinate field in the posterior thalamus.The ipsilateral projections show differences among the species studied, although the global organization remains constant. The differences mainly concern the marginal optic tract which varies from being weakly labeled and restricted to the rostral part of the tectum opticum, to being heavily labeled and innervating the entire tectum to its caudal edge. Species with the heaviest ipsilateral projections all belong to the plethodontid tribe Bolitoglossini, all of which show direct development, a highly projectile tongue, rather frontally oriented eyes and excellent depth perception. In these species the thalamic ipsilateral projection areas are equal in size and shape to the contralateral one. The ipsilateral projections to the tectum show two distinct layers, a superficial and a deep one, which intermingle with the contralateral projections. The two other ipsilateral tracts do not differ significantly among the plethodontid species: the medial optic tract is always heavily and the basal optic tract always weakly labeled.  相似文献   

4.
The contralateral projection of the vertebrate retinotopic map has a component of a mirror or uniaxial inversion in it. Here, a simple hypothesis is proposed which explains how this can come about. The emphasis is on topological considerations, in a global sense, of the overall map. An important feature of the hypothesis is that the optic nerve fibres follow pathways such that they retain their nearest neighbour relationships till they terminate in the optic tectum, i.e. no criss-crossing of the fibres is envisaged. Anatomical evidence for this is already available in the case of the optic tract of frog. Some speculations are also suggested concerning the role of this uniaxial inversion in information processing. The observations of optic tracts of other amphibian and some lower vertebrate systems are also considered.  相似文献   

5.
To study the adaptative capabilities of the retinotectal system in birds, the primordium of one optic tectum from 12-somite embryos of Japanese quail was transplanted either homotopically, to replace the ablated same primordium, or heterotopically, to replace the ablated dorsal diencephalon in White Leghorn chick embryos of the same stage. The quail nucleolar marker was used to recognize the transplants. The cytoarchitecture of the tecta and the retinal projections from the eye contralateral to the graft were studied on the 17th or 18th day of incubation in the chimeric embryos by autoradiographic or horseradish peroxidase tracing methods. Morphometric analysis was applied to evaluate the percentage of the tectal surface receiving optic projections. It was observed that: (i) quail mesencephalic alar plate can develop a fully laminated optic tectum even when transplanted heterotopically; (ii) retinal ganglion cells from the chick not only recognize the tectal neurons of the quail as their specific targets in homotopic grafts, but the optic fibers deviate to innervate the heterotopically grafted tectum; (iii) in the presence of a graft, the chick retina is unable to innervate a tectal surface of similar or larger size than that of the control tectum; (iv) tectal regions devoid of optic projections, whether formed by donor or by host cells, always present an atrophic lamination; (v) the diencephalic supernumerary optic tectum competes with and prevails over the host tectum as a target for optic fiber terminals.  相似文献   

6.
Many parts of the visual system contain topographic maps of the visual field. In such structures, the binocular portion of the visual field is generally represented by overlapping, matching projections relayed from the two eyes. One of the developmental factors which helps to bring the maps from the two eyes into register is visual input. The role of visual input is especially dramatic in the frog, Xenopus laevis. In tadpoles of this species, the eyes initially face laterally and have essentially no binocular overlap. At metamorphosis, the eyes begin to move rostrodorsally; eventually, their visual fields have a 170 degree region of binocular overlap. Despite this major change in binocular overlap, the maps from the ipsilateral and contralateral eyes to the optic tectum normally remain in register throughout development. This coordination of the two projections is disrupted by visual deprivation. In dark-reared Xenopus, the contralateral projection is nearly normal but the ipsilateral map is highly disorganized. The impact of visual input on the ipsilateral map also is shown by the effect of early rotation of one eye. Examination of the tectal lobe contralateral to the rotated eye reveals that both the contralateral and the ipsilateral maps to that tectum are rotated, even though the ipsilateral map originates from the normal eye. Thus, the ipsilateral map has changed orientation to remain in register with the contralateral map. Similarly, the two maps on the other tectal lobe are in register; in this case, both projections are normally oriented even though the ipsilateral map is from the rotated eye. The discovery that the ipsilateral eye's map reaches the tectum indirectly, via a relay in the nucleus isthmi, has made it possible to study the anatomical changes underlying visually dependent plasticity. Retrograde and anterograde tracing with horseradish peroxidase have shown that eye rotation causes isthmotectal axons to follow abnormal trajectories. An axon's route first goes toward the tectal site where it normally would arborize but then changes direction to reach a new tectal site. Such rearrangements bring the isthmotectal axons into proximity with retinotectal axons which have the same receptive fields. Anterograde horseradish peroxidase filling has also been used to study the trajectories and arborizations of developing isthmotectal axons. The results show that the axons enter the tectum before the onset of eye migration but do not begin to branch profusely until eye movement begins to create a zone of binocular space.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Summary The retinal projections of the caecilian Ichthyophis kohtaoensis were investigated by anterograde transport of HRP. The optic tract forms two bundles in the diencephalon, a narrow medial bundle in the optic tectum, and a basal optic tract consisting of few fibres. Terminal fields are in the thalamus, pretectum, tectum, and as a circum-scribed basal optic neuropile in the tegmentum. Thalamic, pretectal and tectal projections are contralateral as well as ipsilateral. The reduced but existing visual projection corresponds to a reduced but existing visually guided behaviour.  相似文献   

8.
Summary The retinal efferents of the catfish, Mystus vittatus, were investigated with the use of the horseradish peroxidase (HRP) technique. Most retinal fibres extended contralateral to the eye that had received HRP label, while a few fascicles projected to the ipsilateral side without decussation in the optic chiasma. The contralateral fibres projected to the suprachiasmatic nucleus, the nucleus opticus dorsolateralis, the nucleus of the posterior commissure, the nucleus geniculatus lateralis, pretectal nuclear complex, and to two layers of the optic tectum, i.e., stratum fibrosum et griseum superficiale and stratum griseum centrale. The accessory optic tract arose from the inner area of the optic tract and extended ventromedially to the accessory optic nucleus. The ipsilateral fascicles projected to almost all the above mentioned nuclei, but these projections were comparatively sparse. The ipsilateral retinal projection was restricted to the rostral tectum.  相似文献   

9.
Retinal projections were experimentally manipulated in a bony fish to reveal conditions under which considerably enlarged ipsilateral projections developed and persisted. Three experimental groups were studied: animals after unilateral enucleation, after unilateral nerve crush, and after enucleation and crush of the remaining optic nerve. At 29 days after unilateral enucleation alone, no enhanced ipsilateral projection had developed. After nerve crush, however, large numbers of retinal fibers regenerated into the ipsilateral tectum. Retrogradely filled, ipsilaterally projecting ganglion cells were distributed throughout the entire retina. After 15 days regenerating retinal fibers covered the entire ipsilateral tectum. At later stages the ipsilateral projection showed progressive reduction in coverage of the tectum. Combining enucleation with nerve crush led to an ipsilateral projection that covered the tectum at 28 days and later. In this experimental situation the development of an ipsilateral projection appears to be a two-step process: (1) Fibers are rerouted to the ipsilateral side at the diencephalon, and (2) ipsilateral fibers persist in the tectum only in the absence of a contralateral projection while they appear to be eliminated in the other cases.  相似文献   

10.
The left eye was removed from Stage 56 Xenopus tadpoles. Two to 9 months after metamorphosis, electrophysiologic analysis showed that the surviving (right) eye mediated a normal visual field projection to the left (contralateral) optic tectum. In addition, a peripheral region of the same retina innervated the entire right (ipsilateral) tectum. Primary evidence that indicates this anomalous ipsilateral projection was due to direct retina-to-tectum innervation comes from singleunit analysis, latency measurements, and tectal lesion studies. Thus, the peripheral retina simultaneously connected in much different patterns to the two optic tecta, solely on the basis of the presence (in the left tectum) or absence (in the right tectum) of central retinal fibers. This documents a role for fiber-fiber interaction (such as repulsion or competition) acting in combination with fiber-tectum interactions in the formation of the retinotectal map.  相似文献   

11.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

12.
Retinal projections were experimentally manipulated in a bony fish to reveal conditions under which considerably enlarged ipsilateral projections developed and persisted. Three experimental groups were studied: animals after unilateral enucleation, after unilateral nerve crush, and after enucleation and crush of the remaining optic nerve. At 29 days after unilateral enucleation alone, no enhanced ipsilateral projection had developed. After nerve crush, however, large numbers of retinal fibers regenerated into the ipsilateral tectum. Retrogradely filled, ipsilaterally projecting ganglion cells were distributed throughout the entire retina. After 15 days regenerating retinal fibers covered the entire ipsilateral tectum. At later stages the ipsilateral projection showed progressive reduction in coverage of the tectum. Combining enucleation with nerve crush led to an ipsilateral projection that covered the tectum at 28 days and later. In this experimental situation the development of an ipsilateral projection appears to be a two-step process: (1) Fibers are rerouted to the ipsilateral side at the diencephalon, and (2) ipsilateral fibers persist in the tectum only in the absence of a contralateral projection while they appear to be eliminated in the other cases. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
In order to specify the tectal projection to the bulbar/spinal regions, the antidromic responses of the physiologically identified tectal neurons as well as the gross antidromic field responses in the optic tectum to electrical stimuli applied to the caudal medulla were examined in the paralyzed common toad, Bufo bufo. The antidromic field potential was recorded in the optic tectum in response to electrical stimuli applied to the ventral paramedian portion of the contralateral caudal medulla (where the crossed tecto-spinal pathway of Rubinson (1968) and Lázár (1969) runs), but generally not when they were applied to various parts of the ipsilateral caudal medulla. The antidromic field potential was largest at the superficial part of Layer 6 or at the border between Layers 6 and 7 of the optic tectum, indicating that neurons in these layers project to the contralateral caudal medulla. Mapping experiments of the antidromic field potential over the optic tectum showed that the antidromic field potential was recorded mainly in the lateral part of it, indicating that this part of the optic tectum is the main source of projection neurons to the contralateral caudal medulla. Various classes of tectal neurons as well as retinal ganglion neurons were identified from the characteristics of the response properties to moving visual stimuli and the properties of the receptive fields. Of these, the Class T1, T2, T3, T4, T5(1), T5(2), T5(3), and T5(4) tectal neurons were activated antidromically by stimuli applied to the contralateral caudal medulla. Only a limited proportion of the Class T5(1) neurons was activated antidromically by stimuli applied to the ipsilateral caudal medulla. On the other hand, the Class T7 and T8 neurons, as well as the Class R2, R3, and R4 retinal neurons, were not activated antidromically by stimuli applied to the caudal medulla of either side. These results suggest a possibility that these tectal neurons which project to the medullary regions form the substrate of the sensorimotor interfacing and contribute to the initiation or coordination of the visually guided behavior, such as prey-catching.  相似文献   

14.
The optic tectum in birds receives visual information from the contralateral retina. This information is passed through to other brain areas via the deep layers of the optic tectum. In the present study the crossed tectobulbar pathway is described in detail. This pathway forms the connection between the optic tectum and the premotor area of craniocervical muscles in the contralateral paramedian reticular formation. It originates predominantly from neurons in the ventromedial part of stratum griseum centrale and to a lesser extent from stratum album centrale. The fibers leave the tectum as a horizontal fiber bundle, and cross the midline through the caudal radix oculomotorius and rostral nucleus oculomotorius. On the contralateral side fibers turn to ventral and descend caudally in the contralateral paramedian reticular formation to the level of the obex. Labeled terminals are found in the ipsilateral medial mesencephalic reticular formation lateral to the radix and motor nucleus of the oculomotor nerve, and in the contralateral paramedian reticular formation, along the descending tract. Neurons in the medial mesencephalic reticular formation in turn project to the paramedian reticular formation. Through the crossed tectobulbar pathway visual information can influence the activity of craniocervical muscles via reticular premotor neurons.  相似文献   

15.
16.
We screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum. By screening 184 mutagenized haploid genomes, seven mutations in five genes causing defects in axonal pathfinding were identified, whereas mutations affecting the topographic projection of RGC axons were not found. The mutants were grouped into two classes according to their phenotypes. In mutants of Class I, a subpopulation of the RGC axons branched out either immediately after leaving the eye or after reaching the midline, and this axonal subpopulation projected to the ipsilateral tectum. In mutants of Class II, subpopulations of RGC axons branched out after crossing the midline and projected aberrantly. These mutants will provide clues to understanding the functions of genes essential for axonal pathfinding, which may be conserved or partly divergent among vertebrates.  相似文献   

17.
Xenopus frogs have a prominent binocular field that develops as a consequence of the migration of the eyes during the remodeling of the head during and after metamorphosis. In the optic tectum, a topographic representation of the ipsilateral eye develops during this same period. It is relayed indirectly, via the nucleus isthmi. In the early stages of binocular development, the topographic matching of the ipsilateral input to the retinotectal input from the contralateral eye is largely governed by chemical cues, but the ultimate determinant of the ipsilateral map is binocular visual input. Visual input is such a dominant factor that abnormal visual input resulting from unilateral eye rotation can induce isthmotectal axons to alter their trajectories dramatically, even shifting their terminal zones from one pole of the tectum to the other. This plasticity normally is high only during a 3-4-month critical period of late tadpole-early juvenile life, but the critical period can be extended indefinitely by dark-rearing. N-methyl-D-aspartate (NMDA) receptors are involved in this process; plasticity can be blocked or promoted by chronic treatment with NMDA antagonists or agonists, respectively. Cholinergic nicotinic receptors on retinotectal axons are likely to play an essential role as well. Modifications in the polysialylation of neural cell adhesion molecule are correlated with the state of plasticity. The circuitry underlying binocular plasticity is not yet fully understood but has proved not to be a simple convergence of ipsilateral and contralateral inputs onto the same targets.  相似文献   

18.
Research was carried out into the visual projections of embryos and chickens of Gallus domesticus L. who had undergone early optic vesicle removal and into microphthalmy or monophthalmy with ipsilateral optic fibres resulting from such removal. The architectonics of primary visual centres (nuclei ectomamillaris, geniculatus lateralis, lateralis anterior superficialis synencephali, griseus tectalis and the tectum opticum superficiale) and of the isthmo-opticus nucleus were compared with the architectonics of the same centres in anophthalms. From this research it can be seen that:--1. Optic fibres coming from limited ocular formation in microphthalms can reach the ectomamillaris nucleus in most cases and sustain existence; they may reach the tectum opticum without playing a qualitatively discernable morphogenetic role and act upon the isthmo-opticus nucleus. For these microphthalms, the nuclei lateralis anterior, geniculatus lateralis, superficialis synencephali and griseus tectalis are comparable to those of anophthalms. 2. Ipsilateral optic fibers can develop and show the same specificity and morphogenetic function as the microphthalms' optic fibres. 3. After hatching, some anophthalms shows an isthmo-opticus nucleus with scores of neurons. In general, observations during this research have shown that the specificity of microphthalms' optic fibres and ipsilateral optic fibres remain strictly the same whatever the operation under consideration.  相似文献   

19.
The retinofugal projections in the eel were studied by use of the cobalt-filling technique. The optic tract projects contralaterally to the hypothalamic optic nucleus, the anterior periventricular nucleus, the lateral geniculate nucleus, the dorsomedial optic nucleus, four pretectal recipient areas, the optic tectum, and the tegmentum. Small ipsilateral projections were demonstrated in the hypothalamic optic nucleus, the dorsomedial optic nucleus, and the optic tectum.  相似文献   

20.
Summary Efferent projections of the optic tectum of zebra finches were investigated by injection of the radioactive anterograde tracer 3H-proline. In addition to a variety of ipsilateral projections, some contralateral connections were found. Quantitative evaluation of the recrossing tecto-rotundal and nucleus subpraetectalis/nucleus interstitio-praetecto-subpraetectalis projection revealed that these connections are much stronger than previously believed. In contrast, the tecto-tectal projection is very weak, as has been shown previously. Further support for this comes from results obtained using injections of retrograde tracers. The role of the different projections in conveying information from the ipsilateral eye to the ectostriatum, the telencephalic end-station of the tectofugal pathway, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号