首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
The maturation of replicating simian virus 40 (SV40) chromosomes into superhelical viral DNA monomers [SV40(I) DNA] was analyzed in both intact cells and isolated nuclei to investigate further the role of soluble cytosol factors in subcellular systems. Replicating intermediates [SV40(RI) DNA] were purified to avoid contamination by molecules broken at their replication forks, and the distribution of SV40(RI) DNA as a function of its extent of replication was analyzed by gel electrophoresis and electron microscopy. With virus-infected CV-1 cells, SV40(RI) DNA accumulated only when replication was 85 to 95% completed. These molecules [SV40(RI*) DNA] were two to three times more prevalent than an equivalent sample of early replicating DNA, consistent with a rate-limiting step in the separation of sibling chromosomes. Nuclei isolated from infected cells permitted normal maturation of SV40(RI) DNA into SV40(I) DNA when the preparation was supplemented with cytosol. However, in the absence of cytosol, the extent of DNA synthesis was diminished three- to fivefold (regardless of the addition of ribonucleotide triphosphates), with little change in the rate of synthesis during the first minute; also, the joining of Okazaki fragments to long nascent DNA was inhibited, and SV40(I) DNA was not formed. The fraction of short-nascent DNA chains that may have resulted from dUTP incorporation was insignificant in nuclei with or without cytosol. Pulse-chase experiments revealed that joining, but not initiation, of Okazaki fragments required cytosol. Cessation of DNA synthesis in nuclei without cytosol could be explained by an increased probability for cleavage of replication forks. These broken molecules masqueraded during gel electrophoresis of replicating DNA as a peak of 80% completed SV40(RI) DNA. Failure to convert SV40(RI*) DNA into SV40(I) DNA under these conditions could be explained by the requirement for cytosol to complete the gap-filling step in Okazaki fragment metabolism: circular monomers with their nascent DNA strands interrupted in the termination region [SV40(II*) DNA] accumulated with unjoined Okazaki fragments. Thus, separation of sibling chromosomes still occurred, but gaps remained in the terminal portions of their daughter DNA strands. These and other data support a central role for SV40(RI*) and SV40(II*) DNAs in the completion of viral DNA replication.  相似文献   

2.
The distribution of preformed ("old") histone octamers between the two arms of DNA replication forks was analyzed in simian virus 40(SV40)-infected cells following treatment with cycloheximide to prevent nucleosome assembly from nascent histones. Viral chromatin synthesized in the presence of cycloheximide was shown to be deficient in nucleosomes. Replicating SV40 DNA (wild-type 800 and capsid assembly mutant, tsB11) was radiolabeled in either intact cells or nuclear extracts supplemented with cytosol. Nascent nucleosomal monomers were then released by extensive digestion of isolated nuclei, nuclear extracts or isolated viral chromosomes with micrococcal nuclease. The labeled nucleosomal DNA was purified and found to hybridize to both strands of SV40 DNA restriction fragments taken from each side of the origin of DNA replication, whereas Okazaki fragments hybridized only to the strand representing the retrograde DNA template. In addition, isolated, replicating SV40 chromosomes were digested with two strand-specific exonucleases that excised nascent DNA from either the forward or the retrograde side of replication forks. Pretreatment of cells with cycloheximide did not result in an excess of prenucleosomal DNA on either side of replication forks, but did increase the amount of internucleosomal DNA. These data are consistent with a dispersive model for nucleosome segregation in which "old" histone octamers are distributed to both arms of DNA replication forks.  相似文献   

3.
Simian virus 40 (SV40) nucleoprotein complexes were prepared from lytically infected cells and used as primer-templates for DNA replication in protein extracts from Xenopus eggs. We found that nucleoprotein containing replicating SV40 DNA served as primer-template while nucleoprotein with nonreplicating SV40 DNA was ineffective. In vitro DNA synthesis begins with short DNA fragments ("Okazaki fragments") which are, in later steps, joined to give unit length SV40 DNA strands, suggesting that in vivo initiated rounds of replication are completed in vitro in the Xenopus system. This conclusion is supported by a restriction enzyme analysis showing that in vitro DNA synthesis occurs in fragments distal to the SV40 origin of replication. Our studies indicate that SV40 DNA replication in Xenopus extracts can be used an an experimental system to study the biochemistry of replicative DNA chain elongation in vitro.  相似文献   

4.
Replicating simian virus 40 (SV40) chromosomes were found to be similar to other eukaryotic chromosomes in that the rate and extent of micrococcal nuclease (MNase) digestion were greater with replicating than with nonreplicating mature SV40 chromatin. MNase digestion of replicating SV40 chromosomes, pulse labeled in either intact cells or nuclear extracts, resulted in the rapid release of nascent DNA as essentially bare fragments of duplex DNA (3-7S) that had an average length of 120 base pairs and were degraded during the course of the reaction. In addition, nucleosomal monomers, equivalent in size to those from mature chromosomes, were released. On the other hand, MNase digestion of uniformly labeled mature SV40 chromosomes resulted in the release of only nucleosomal monomers and oligomers. The small nascent DNA fragments released from replicating chromosomes represented prenucleosomal DNA (PN-DNA) from the region of replication forks that encompasses the actual sites of DNA synthesis and includes Okazaki fragments. Predigestion of replicating SV40 chromosomes with both Escherichia coli exonuclease III (3'-5') and bacteriophage T7 gene 6 exonuclease (5'-3') resulted in complete degradation of PN-DNA. This result, together with the observation that isolated PN-DNA annealed equally well to both strands of SV40 restriction fragments, demonstrated that PN-DNA originates from both sides of replication forks. Over 90% of isolated Okazaki fragments annealed only to the retrograde DNA template. The characteristics of isolated PN-DNA were assessed by examining its sensitivity to MNase and single strand specific S1 endonuclease, sedimentation behavior before and after deproteinization, buoyant density in CsCl after formaldehyde treatment, and size on agarose gels. In addition, it was observed that MNase digestion of purified SV40 DNA also resulted in the release of a transient intermediate similar in size to PN-DNA, indicating that a DNA-protein complex is not required to account for the appearance of PN-DNA. These and other data provide a model of replicating chromosomes in which DNA synthesis occurs on a region of replication forks that is free of nucleosomes and is designated as prenucleosomal DNA.  相似文献   

5.
A cell-free simian virus 40 (SV40) DNA replication system served to study the role of RNA in the initiation of nascent DNA chains of less than 200 nucleotides (Okazaki pieces). RNA-DNA covalent linkages were found to copurify with SV40 replicating DNA. These linkages were identified by transfer of a fraction of the 32P from the 5′ position of a deoxyribonucleotide to 2′(3′)rNMPs upon either alkaline hydrolysis or RNAase T2 digestion of SV40 replicating [32P]DNA. Alkaline hydrolysis also exposed 5′ terminal hydroxyl groups in the nascent DNA which were detected as nucleosides after digestion with P1 nuclease. The RNA-DNA covalent linkages resulted from a population of Okazaki pieces containing uniquely sized oligoribonucleotides covalently attached to their 5′ termini (RNA primers). The density of a portion of the Okazaki pieces in potassium iodide gradients corresponded to a content of 90% DNA and 10% RNA, while the remaining Okazaki pieces appeared to contain only DNA. Incubation of Okazaki pieces with a defined length in the presence of either RNAase T2 or potassium hydroxide converted about one-third to one-half of them intto a second well defined group of DNA chains of greater electrophoretic mobili y in polyacrylamide gels. The increased mobility corresponded to the removalof at least seven-residues. Since alkaline hydrolysis of similar Okazaki pieces revealed that one-third to one-half of them contained rN-32P-dN linkages, the oligoribonucleotides must be covalently attached to the 5′ ends of nascent DNA chains. Although the significance of two populations of Okazaki pieces, one with and one without RNA primers, is imperfectly understood, a sizable fraction of nascent DNA chains clearly contained RNA primers.Neither the length of the RNA primer nor the number of RNA primers per DNA chain changed significantly with increasing length of Okazaki pieces. Since the frequency of RNA-DNA junctions found in nascent DNA chains greater than 400 nucleotides was similar to that of Okazaki pieces, the complete excision of RNA primers appears to occur after Okazaki pieces are joined to the 5′ end of growing daughter strands.32P-label transfer analysis of Okazaki pieces recovered from hybrids with isolated HindII + III restriction fragments of SV40 DNA revealed a uniform distribution of rN-P-dN sequences around the replicating DNA molecule. Therefore, most, if not all, RNA primers serve to initiate Okazaki pieces rather than to initiate DNA replication at the origin of the genome. Moreover, the positions of RNA primers are not determined by a specific set of nucleotide sequences.  相似文献   

6.
Mature SV40 DNA synthesized for different periods of time either in isolated nuclei or in intact cells was highly purified and then digested with restriction endonucleases in order to relate the time of synthesis of newly replicated viral DNA to its location in the genome. Replication in nuclei supplemented with a cytosol fraction from uninfected cells was a faithful continuation of the bidirectional process observed in intact cells, but did not exhibit significant initiation of new replicons. SV40 DNA replication in cells at 37 degrees C proceeded at about 145 nucleotides/min per replication fork. In the absence of cytosol, when DNA synthesis was limited and joining of Okazaki fragments was retarded, bidirectional SV40 DNA replication continued into the normal region where separation yeilded circular duplex DNA molecules containing one or more interruptions in the nascent DNA strands. In the presence of cytosol, this type of viral DNA was shown to be a precursor of covalently closed, superhelical SV40 DNA, the mature from of viral DNA.  相似文献   

7.
Metabolism of Okazaki fragments during simian virus 40 DNA replication.   总被引:3,自引:0,他引:3  
Essentially all of the Okazaki fragments on replicating Simian virus 40 (SV40)DNA could be grouped into one of three classes. Class I Okazaki fragments (about 20%) were separated from longer nascent DNA chains by a single phosphodiester bond interruption (nick) and were quantitatively identified by treating purified replicating DNA with Escherichia coli DNA ligase and then measuring the fraction of Okazaki fragments joined to longer nascent DNA chains. Similarly, class II Okazaki fragments (about 30%) were separated by a region of single-stranded DNA template (gap) that could be filled and sealed by T4 DNA polymerase plus E. coli DNA ligase, and class III fragments (about 50%) were separated by RNA primers that could be removed with E. coli DNA olymerase I, allowing the fragments to be joined with E. coli DNA ligase. These results were obtained with replicating SV40 DNA that had been briefly labeled with radioactive precursors in either intact cells or isolated nuclei. When isolated nuclei were further incubated in the presence of cytosol, all of the Okazaki fragments were converted into longer DNA strands as expected for intermediates in DNA synthesis. However, when washed nuclei were incubated in the abscence of cytosol, both class I and class II Okazaki fragments accumulated despite the excision of RNA primers: class III Okazaki fragments and RNA-DNA covalent linkages both disappeared at similar rates. These data demonstrate the existence of RNA primers in whole cells as well as in isolated nuclei, and identify a unique gap-filling step that is not simply an extension of the DNA chain elongation process concomitant with the excision of RNA primers. One or more factos found in cytosol, in addition to DNA polymerase alpha, are specifically involved in the gap-filling and ligation steps. The sizes of mature Okazaki fragments (class I) and Okazaki fragments whose synthesis was completed by T4 DNA polymerase were measured by gel electrophoresis and found to be broadly distributed between 40 and 290 nucleotides with an average length of 135 nucleotides. Since 80% and 90% of the Okazaments does not occur at uniformly spaced intervals along the DNA template. During the excision of RNA primers, nascent DNA chains with a single ribonucleotide covalently attached to the 5' terminus were identified as transient intermediates. These intermediates accumulated during excision of RNA primers in the presence of adenine 9-beta-D-arabinoside 5'-triphosphate, and those Okazaki fragments blocked by RNA primers (class III) were found to have originated the farthest from the 5' ends of long nascent DNA strands. Thus, RNA primers appear to be excised in two steps with the second step, removal of the final ribonucleotide, being stimulated by concomitant DNA synthesis. These and other data were used to construct a comprehensive metabolic pathway for the initiation, elongation, and maturation of Okazaki fragments at mammalian DNA replication forks.  相似文献   

8.
Exonucleases specific for either 3' ends (Escherichia coli exonuclease III) or 5' ends (bacteriophage T7 gene 6 exonuclease) of nascent DNA chains have been used to determine the number of nucleotides from the actual sites of DNA synthesis to the first nucleosome on each arm of replication forks in simian virus 40 (SV40) chromosomes labeled with [3H]thymidine in whole cells. Whereas each enzyme excised all of the nascent [3H]DNA from purified replicating SV40 DNA, only a fraction of the [3H]DNA was excised from purified replicating SV40 chromosomes. The latter result was attributable to the inability of either exonuclease to digest nucleosomal DNA in native replicating SV40 chromosomes, as demonstrated by the following observations: (i) digestion with either exonuclease did not reduce the amount of newly synthesized nucleosomal DNA released by micrococcal nuclease during a subsequent digestion period; (ii) in briefly labeled molecules, as much as 40% of the [3H]DNA was excised from long nascent DNA chains; (iii) the fraction of [3H]DNA excised by exonuclease III was reduced in proportion to the actual length of the radiolabeled DNA; (iv) the effects of the two exonucleases were additive, consistent with each enzyme trimming only the 3' or 5' ends of nascent DNA chains without continued excision through to the opposite end. When the fraction of nascent [3H]DNA excised from replicating SV40 DNA by exonuclease III was compared with the fraction of [32P]DNA simultaneously excised from an SV40 DNA restriction fragment, the actual length of nascent [3H]DNA was calculated. From this number, the fraction of [3H]DNA excised from replicating SV40 chromosomes was converted into the number of nucleotides. Accordingly, the average distance from either 3' or 5' ends of long nascent DNA chains to the first nucleosome on either arm of replication forks was found to be 125 nucleotides. Furthermore, each exonuclease excised about 80% of the radiolabel in Okazaki fragments, suggesting that less than one-fifth of the Okazaki fragments were contained in nucleosomes. On the basis of these and other results, a model for eukaryotic replication forks is presented in which nucleosomes appear rapidly on both the forward and retrograde arms, about 125 and 300 nucleotides, respectively, from the actual site of DNA synthesis. In addition, it is proposed that Okazaki fragments are initiated on nonnucleosomal DNA and then assembled into nucleosomes, generally after ligation to the 5' ends of long nascent DNA chains is completed.  相似文献   

9.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

10.
R T Hay  M L DePamphilis 《Cell》1982,28(4):767-779
Initiation sites for DNA synthesis were located at the resolution of single nucleotides in and about the genetically defined origin of replication (ori) in replicating SV40 DNA purified from virus-infected cells. About 50% of the DNA chains contained an oligoribonucleotide of six to nine residues covalently attached to their 5' ends. Although the RNA-DNA linkage varied, the putative RNA primer began predominantly with rA. The data reveal that initiation of DNA synthesis is promoted at a number of DNA sequences that are asymmetrically arranged with respect to ori: 5' ends of nascent DNA are located at several sites within ori, but only on the strand that also serves as the template for early mRNA, while 5' ends of nascent DNA with the opposite orientation are located only outside ori on its early gene side. This clear transition between discontinuous (initiation sites) and continuous (no initiation sites) DNA synthesis defines the origin of bidirectional replication at nucleotides 5210--5211 and demonstrates that discontinuous synthesis occurs predominantly on the retrograde arms of replication forks. Furthermore, it appears that the first nascent DNA chain is initiated within ori by the same mechanism used to initiate nascent DNA ("Okazaki fragments") throughout the genome.  相似文献   

11.
The effects of topoisomerases I and II on the replication of SV40 DNA were examined using an in vitro replication system of purified proteins that constitutes the monopolymerase system. In the presence of the two topoisomerases, two distinct nascent DNAs were formed. One product arising from the replication of the leading template strand was approximately half the size of the template DNA, whereas the other product derived from the lagging template strand consisted of short DNAs. These products were synthesized from both SV40 naked DNA and SV40 chromosomes. For the replication of SV40 naked DNA, either topoisomerase I or II maintained replication fork movement and supported complete leading strand synthesis. When SV40 chromosomes were replicated with the same proteins, reactions containing only topoisomerase I produced shorter leading strands. However, mature size DNA products accumulated in reactions supplemented with topoisomerase II, as well as in reactions containing only topoisomerase II. In the presence of crude extracts of HeLa cells, VP-16, a specific inhibitor of topoisomerase II, blocked elongation of the nascent DNA during the replication of SV40 chromosomes. These results indicate that topoisomerase II plays a crucial role as a swivelase in the late stage of SV40 chromosome replication in vitro.  相似文献   

12.
It is generally accepted that an aphidicolin-sensitive DNA polymerase elongates the eucaryotic RNA primer (iRNA) into a mature Okazaki piece reaching ca. 200 nucleotides. Yet, as shown here, nascent DNA chains below 40 nucleotides accumulated in simian virus 40 (SV40) DNA replicating in isolated nuclei in the presence of aphidicolin. These products resembled precursors of longer Okazaki pieces synthesized in the absence of aphidicolin (termed here DNA primers) in size distribution, lagging-replication-fork polarity, and content of iRNA. Within the isolated SV40 replicative intermediate, DNA primers could be extended in a reaction catalyzed by the Escherichia coli DNA polymerase I large fragment. This increased their length by an average of 21 deoxyribonucleotide residues, indicating that single-stranded gaps of corresponding length existed 3' to the DNA primers. Incubation with T4 DNA ligase converted most of the extended DNA primers into products resembling long Okazaki pieces. These data led us to propose that the synthesis of an SV40 Okazaki piece could be itself discontinuous and could comprise the following steps: (i) iRNA synthesis by DNA primase, (ii) iRNA extension into a DNA primer by an aphidicolin-resistant activity associated with DNA primase-DNA polymerase alpha, (iii) removal of iRNA moieties between adjacent DNA primers, (iv) "gap filling" between DNA primers by the aphidicolin-sensitive DNA polymerase alpha, and (v) ligation of DNA primer units onto a growing Okazaki piece. Eventually, a mature Okazaki piece is ligated onto a longer nascent DNA chain.  相似文献   

13.
Simian Virus 40 (SV40) DNA replication is a useful model to study eukaryotic cell DNA replication because it encodes only one replication protein and its genome has a nucleoprotein structure ('minichromosome') indistinguishable from cellular chromatin. Late after infection SV40 replicating DNA molecules represent about 5% of total viral minichromosomes. Since gene 32 protein (P32) from bacteriophage T4 interacts with single-stranded DNA and SV40 replication complexes are expected to contain single-stranded regions at the replication forks, we asked whether P32 might be used to isolate replicating SV40 minichromosomes. When nuclear extracts from SV40 infected cells were treated sequentially with P32 and anti-P32 antibodies, pulse-labeled minichromosomes were selectively immunoprecipitated. Agarose gel electrophoresis analysis confirmed that immunoprecipitated material corresponded to SV40 replicative intermediates. Protein analysis of the pelleted material revealed several proteins of viral and cellular origin. Among them, T antigen and histones were found to be complexed with at least other three proteins from cellular origin, to the replicative complexes. Additionally, anti-P32 antibodies were able to detect three cellular proteins of approximately 70, 32 and 13 kDa in western blots. These proteins could correspond to those found as part of an eukaryotic multisubunit single-stranded DNA binding protein. The use of P32 and anti-P32 antibodies thus allows the separation of replicating from mature SV40 minichromosomes and can constitute a novel method to enrich and to study replicative active chromatin.  相似文献   

14.
D Perlman  J A Huberman 《Cell》1977,12(4):1029-1043
We have pulse-labeled simian virus 40 (SV40)-infected monkey cells with 3H-thymidine (3H-dThd) and have hybridized the viral Okazaki pieces (rapidly labeled short DNA chains found during DNA replication, < 250 nucleotides long) and SV40 “intermediate sized” DNA (longer nascent strands, up to full replicon size) to the separated strands of two SV40 DNA restriction fragments, one lying to either side of the origin of bidirectional DNA replication. As much as 5 fold more Okazaki piece DNA hybridized to one strand than to the other strand of each restriction fragment. The excess Okazaki piece DNA was in the strands oriented 3′ → 5′ away from the replication origin (the strands which are expected to be synthesized discontinuously). Neither the duration of the labeling period nor the temperature of the cells during labeling significantly altered this hybridization asymmetry. With respect to the hybridization of “intermediate sized” DNA, a reverse asymmetry was detected (1.7 fold more radioactivity in the strands oriented 5′ → 3′ away from the origin for a 1 min pulse label at 22°C). The effects on these hybridization asymmetries of preincubating the infected cells with FdUrd prior to pulse-labeling were also determined.We also measured the size of the Okazaki pieces using gel electrophoresis under denaturing conditons after releasing the pieces from the filter-bound DNA strands. The size distribution of the Okazaki piece DNA from each strand was the same (~ 145 nucleotides, weight average; 200–250 nucleotides, maximum size), indicating that the hybridization asymmetry resulted from a difference in the number rather than the size of the pieces in each strand.The simplest interpretation of our results is that SV40 DNA is synthesized semidiscontinuously: the strand with 3′ → 5′ orientation away from the origin is synthesized in short Okazaki pieces which are subsequently joined together, while the strand with 5′ → 3′ orientation away from the origin is synthesized continuously. Some models of two-strand discontinuous synthesis, however, cannot be ruled out.  相似文献   

15.
Simian virus 40 (SV40) replicating chromosomes were extracted from nuclei of infected cells. The chromosomes in the extract were resolved on neutral sucrose gradients, and the extent of replication of the DNA in the chromosome peaks was determined. The extract, in combination with cytosol factors and the appropriate precursors, supports the continued replication of viral DNA. The products of the incubation were mature form I DNA and molecules (after deproteinization) with sedimentation coefficients, in neutral sucrose, of 22S and 29S. The results of our analysis of this system indicate the following. (i) The 22S molecule, which has been described by previous workers, is a relaxed, replicating molecule and is an artifact of the in vitro system. (ii) When the in vitro synthesis is performed at optimal ionic strength (150 mM potassium acetate), the artifactual 22S molecule does not appear. (iii) Late replicative intermediates do accumulate in vivo and in vitro. The major late form accumulated is 91% completed. (iv) The replicating chromosomes can be resolved into two distinct peaks on neutral sucrose gradients. The molecules in these peaks differ in extent of replication. (v) The nuclear extraction procedure preferentially extracts early replicating chromosomes. The relevance of these data to the problem of SV40 and cellular chromosome replication and termination is described.  相似文献   

16.
The contributions of DNA polymerases alpha, delta, and epsilon to SV40 and nuclear DNA syntheses were evaluated. Proteins were UV-crosslinked to nascent DNA within replicating chromosomes and the photolabelled polymerases were immunopurified. Only DNA polymerases alpha and delta were detectably photolabelled by nascent SV40 DNA, whether synthesized in soluble viral chromatin or within nuclei isolated from SV40-infected cells. In contrast, all three enzymes were photolabelled by the nascent cellular DNA. Mitogenic stimulation enhanced the photolabelling of the polymerases in the alpha>delta>epsilon order of preference. The data agree with the notion that DNA polymerases alpha and delta catalyse the principal DNA polymerisation reactions at the replication fork of SV40 and, perhaps, also of nuclear chromosomes. DNA polymerase epsilon, implicated by others as a cell-cycle checkpoint regulator sensing DNA replication lesions, may be dispensable for replication of the small, fast propagating virus that subverts cell cycle controls.  相似文献   

17.
18.
In marked contrast to simian virus 40 (SV40), polyoma virus (PyV) has been reported to replicate discontinuously on both arms of replication forks. In an effort to clarify the relationship between the mechanisms of DNA replication in these closely related viruses, the distribution of RNA-primed DNA chains at replication forks was examined concurrently in PyV and SV40 replicating DNA purified from virus-infected cells. About one third of PyV DNA chains contained 7 to 9 ribonucleotides covalently linked to their 5'-end. A similar fraction of DNA chains from replicating SV40 DNA contained an oligoribonucleotide that was 6 to 9 residues long and began with either (p)ppA or (p)ppG. Greater than 80% of PyV or SV40 RNA-primed DNA chains hybridized specifically to the retrograde template. Moreover, at least 95% of the RNA-primed DNA chains from either PyV or SV40 whose initiation sites could be mapped to unique nucleotide locations originated from the retrograde template. Therefore, PyV and SV40 DNA replication forks are essentially the same; DNA synthesis is discontinuous predominantly, if not exclusively, on the retrograde template.  相似文献   

19.
Simian virus 40 replicating DNA was pulse labeled with alpha-32P-dATP using an acellular DNA replication system. Nascent DNA chains of less than 200 nucleotides (Okazaki pieces) were then isolated from the denatured replicating DNA by electrosieving through a polyacrylamide gel column. The purified Okazaki pieces were hybridized to separated strands of Bg1(1)+Hpa1 simian virus 40 DNA restriction fragments immobilized on nitrocellulose filters. Only strands with polarity of the DNA replication fork direction hybridized with Okazaki pieces. Hence, Okazaki pieces in simian virus 40 are synthesized against the DNA replication fork direction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号