首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
Analyses of mitogen-activated protein kinases (MAPKs) in a mouse hepatitis virus (MHV)-infected macrophage-derived J774.1 cell line showed activation of two MAPKs, p38 MAPK and c-Jun N-terminal kinase (JNK), but not of extracellular signal-regulated kinase (ERK). Activation of MAPKs was evident by 6 h postinfection. However, UV-irradiated MHV failed to activate MAPKs, which demonstrated that MHV replication was necessary for their activation. Several other MHV-permissive cell lines also showed activation of both p38 MAPK and JNK, which indicated that the MHV-induced stress-kinase activation was not restricted to any particular cell type. The upstream kinase responsible for activating MHV-induced p38 MAPK was the MAPK kinase 3. Experiments with a specific inhibitor of p38 MAPK, SB 203580, demonstrated that MHV-induced p38 MAPK activation resulted in the accumulation of interleukin-6 (IL-6) mRNAs and an increase in the production of IL-6, regardless of MHV-induced general host protein synthesis inhibition. Furthermore, MHV production was suppressed in SB 203580-treated cells, demonstrating that activated p38 MAPK played a role in MHV replication. The reduced MHV production in SB 203580-treated cells was, at least in part, due to a decrease in virus-specific protein synthesis and virus-specific mRNA accumulation. Interestingly, there was a transient increase in the amount of phosphorylation of the translation initiation factor 4E (eIF4E) in infected cells, and this eIF4E phosphorylation was p38 MAPK dependent; it is known that phosphorylated eIF4E enhances translation rates of cap-containing mRNAs. Furthermore, the upstream kinase responsible for eIF4E phosphorylation, MAPK-interacting kinase 1, was also phosphorylated and activated in response to MHV infection. Our data suggested that host cells, in response to MHV replication, activated p38 MAPK, which subsequently phosphorylated eIF4E to efficiently translate certain host proteins, including IL-6, during virus-induced severe host protein synthesis inhibition. MHV utilized this p38 MAPK-dependent increase in eIF4E phosphorylation to promote virus-specific protein synthesis and subsequent progeny virus production. Enhancement of virus-specific protein synthesis through virus-induced eIF4E activation has not been reported in any other viruses.  相似文献   

2.
3.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

4.
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.  相似文献   

5.
6.
7.
Tumor necrosis factor-alpha (TNF-alpha) is one of the key cytokines elicited by host macrophages upon challenge with pathogenic mycobacteria. Infection of human peripheral blood mononuclear cells or the murine macrophage cell line J774A-1 with Mycobacterium avium induced activation of the mitogen-activated protein kinases (MAPKs) ERK1/2, p38 and c-Jun N-terminal kinase. U0126, an MEK-specific inhibitor, abrogated M. avium-induced TNF-alpha secretion. Transfection of cells with dominant-negative MEK1 led to the suppression of TNF-alpha release in M. avium-challenged macrophages. M. avium activated p38 MAPK and use of the p38 MAPK inhibitor, SB203580, revealed that the p38 signaling pathway negatively regulates activation of ERK1/2 and release of TNF-alpha. Taken together, these results provide evidence that M. avium-induced TNF-alpha release from macrophages depends on an interplay between the ERK1/2 and the p38 MAPK signaling pathways.  相似文献   

8.
9.
E. tenella infection is associated with a severe intestinal disease leading to high economic losses in poultry industry. Mitogen activated protein kinases (MAPKs) are implicated in early response to infection and are divided in three pathways: p38, extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK). Our objective was to determine the importance of these kinases on cell invasion by E. tenella. We evaluated the effect of specific inhibitors (ERK: PD98059, JNKII: SP600125, p38 MAPK: SB203580) on the invasion of epithelial cells. Incubation of SP600125 and SB203580 with epithelial cells and parasites significantly inhibited cell invasion with the highest degree of inhibition (90%) for SB203580. Silencing of the host p38α MAPK expression by siRNA led to only 20% decrease in cell invasion. In addition, when mammalian epithelial cells were pre-treated with SB203580, and washed prior infection, a 30% decrease in cell invasion was observed. This decrease was overcome when a p38 MAPK activator, anisomycin was added during infection. This suggests an active but limited role of the host p38 MAPK in this process. We next determined whether SB203580 has a direct effect on the parasite. Indeed, parasite motility and secretion of micronemal proteins (EtMIC1, 2, 3 and 5) that are involved in cell invasion were both decreased in the presence of the inhibitor. After chasing the inhibitor, parasite motility and secretion of micronemal proteins were restored and subsequently cell invasion. SB203580 inhibits cell invasion by acting partly on the host cell and mainly on the parasite.  相似文献   

10.
11.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

12.
13.
14.
Host mitogen-activated protein kinases (MAPKs) are deregulated by herpes simplex virus 1 (HSV-1). Unlike p38 MAPK and Jun N-terminal protein kinase (JNK), which require ICP27 for their activation early in infection, extracellular signal-regulated kinase (ERK) activity is suppressed by an unknown mechanism. Here, we establish that HSV-1-induced suppression of ERK activity requires viral gene expression, occurs with delayed-early kinetics, and requires the functional virus-encoded Us3 Ser/Thr protein kinase. Finally, Us3 expression in uninfected cells was necessary and sufficient to suppress ERK activity in the absence of any other virus-encoded gene products. This demonstrates that inhibition of ERK activity in HSV-1-infected cells is an intrinsic Us3 function and defines a new role for this alphaherpesvirus Us3 kinase in regulating MAPK activation in infected cells.  相似文献   

15.
16.
Treatment of pancreatic acinar cells by hydrogen sulphide has been shown to induce apoptosis. However, a potential role of mitogen-activated protein kinases (MAPKs) in this apoptotic pathway remains unknown. The present study examined the role of MAPKs in H2S-induced apoptosis in mouse pancreatic acinar cells. Pancreatic acinar cells were treated with 10 μM NaHS (a donor of H2S) for 3 hrs. For the evaluation of the role of MAPKs, PD98059, SP600125 and SB203580 were used as MAPKs inhibitors for ERK1/2, JNK1/2 and p38 MAPK, respectively. We observed activation of ERK1/2, JNK1/2 and p38 when pancreatic acini were exposed to H2S. Moreover, H2S-induced ERK1/2, JNK1/2 and p38 activation were blocked by pre-treatment with their corresponding inhibitor in a dose-dependent manner. H2S-induced apoptosis led to an increase in caspase 3 activity and this activity was attenuated when caspase 3 inhibitor were used. Also, the cleavage of caspase 3 correlated with that of poly-(ADP-ribose)-polymerase (PARP) cleavage. H2S treatment induced the release of cytochrome c , smac from mitochondria into the cytoplasm, translocation of Bax into mitochondria and decreased the protein level of Bcl-2. Inhibition of ERK1/2 using PD98059 caused further enhancement of apoptosis as evidenced by annexin V staining, while SP600125 and SB203580 abrogated H2S-induced apoptosis. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to H2S-induced apoptosis.  相似文献   

17.
18.
Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is emerging as a key contributor for endothelial dysfunction associated with inflammation. Statins can inhibit vascular inflammatory reaction and improve endothelial function. The aim of this study was to investigate in human endothelial cells the signaling pathways of ADMA-induced inflammatory reaction and potential inhibitory effects of simvastatin. Endothelial cells were cultured and used for all of the studies. Tumor necrosis factor-alpha(TNF-alpha) and soluble intercellular adhesion molecule-1 (sICAM-1) were determined by enzyme-linked immunosorbent assay. Nuclear factor-kappaB (NF-kappaB) was assayed by electrophoretic mobility shift assay. The activation of mitogen-activated protein kinases (MAPKs), including p38 MAPK and extracellular signal-related kinase (ERK(1/2)), were characterized by Western blot analysis. Treatment with ADMA (3-30 micromol/L) increased the concentration of sICAM-1 in a dose-dependent manner. ADMA (30 micromol/L) significantly enhanced the concentrations of TNF-alpha and sICAM-1, the activity of NF-kappaB and the phosphorylation of p38 MAPK and ERK(1/2). The increased secretion of TNF-alpha and sICAM-1 and the increased activity of NF-kappaB by ADMA were altered by SB203580 (5 micromol/L) or PD98059 (20 micromol/L), but not by LY294002 (20 micromol/L). Simvastatin (0.1, 0.5, or 2.5 micromol/L) markedly inhibited the elevated concentrations of TNF-alpha and sICAM-1, the activity of NF-kappaB, and the phosphorylation of p38 MAPK and ERK(1/2) induced by ADMA. Simvastatin inhibited ADMA-induced inflammatory reaction by p38 MAPK and ERK(1/2) pathways in cultured endothelial cells.  相似文献   

19.
The role of sphingosine kinase (SPHK) in the dibutyryl cyclic AMP (dbcAMP)-induced granulocytic differentiation of HL60 cells was investigated. During differentiation, SPHK activity was increased, as were mRNA and protein levels of SPHK1, but not of SPHK2. Pretreatment of HL60 cells with N,N-dimethylsphingosine (DMS), a potent SPHK inhibitor, completely blocked dbcAMP-induced differentiation. The phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK was also increased during dbcAMP-induced differentiation. Pretreatment of HL60 cells with the MEK inhibitor, U0126, but not the p38 MAPK inhibitor, SB203580, completely suppressed dbcAMP-induced ERK1/2 activation and granulocytic differentiation, but did not affect the increase in SPHK activity. DMS inhibited dbcAMP-induced ERK1/2 activation, but had little effect on p38 MAPK activation. DMS had no effect on the dbcAMP-induced membrane translocation of protein kinase C (PKC) isozymes, and PKC inhibitors had no significant effect on ERK activation. The overexpression of wild-type SPHK1, but not dominant negative SPHK1, resulted in high basal levels of ERK1/2 phosphorylation and stimulated granulocytic differentiation in HL60 cells. These data show that SPHK1 participates in the dbcAMP-induced differentiation of HL60 cells by activating the MEK/ERK pathway.  相似文献   

20.
Smith JS  Xu Z  Tian J  Palmer DJ  Ng P  Byrnes AP 《PloS one》2011,6(10):e26755
Adenoviral vectors (AdV) activate multiple signaling pathways associated with innate immune responses, including mitogen-activated protein kinases (MAPKs). In this study, we investigated how systemically-injected AdVs activate two MAPK pathways (p38 and ERK) and the contribution of these kinases to AdV-induced cytokine and chemokine responses in mice. Mice were injected intravenously either with a helper-dependent Ad2 vector that does not express viral genes or transgenes, or with the Ad2 mutant ts1, which is defective in endosomal escape. We found that AdV induced rapid phosphorylation of p38 and ERK as well as a significant cytokine response, but ts1 failed to activate p38 or ERK and induced only a limited cytokine response. These results demonstrate that endosomal escape of virions is a critical step in the induction of these innate pathways and responses. We then examined the roles of p38 and ERK pathways in the innate cytokine response by administering specific kinase inhibitors to mice prior to AdV. The cytokine and chemokine response to AdV was only modestly suppressed by a p38 inhibitor, while an ERK inhibitor has mixed effects, lowering some cytokines and elevating others. Thus, even though p38 and ERK are rapidly activated after i.v. injection of AdV, cytokine and chemokine responses are mostly independent of these kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号