首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. blossfeldiana Poelln. cv. Hikan was grown in vermiculite,supplied daily with nutrient solution containing 1 mM (or 10mM) nitrate or ammonium as the sole nitrogen source. The nitrate-grownplants had more activity of CAM (Crassulacean acid metabolism)photosynthesis (nocturnal CO2 uptake in the shoot and nocturnalincreases of titratable acidity and malate content in the leaves)than the ammonium-grown plants. Interruption of the solutionsupply for 5 or more days (drought conditions) increased theactivity of CAM photosynthesis in nitrate- or ammonium-grownplants, and the diurnal CO2 uptake pattern in the nitrate-grownplants shifted from ‘weak-CAM’ to ‘full-CAM’.The difference in the activity of CAM photosynthesis betweennitrate- and ammonium-grown plants increased under the droughtconditions. When the solution was resupplied, the activity ofCAM photosynthesis rapidly decreased to the levels before theinterruption. The physiological mechanism and ecological significanceof the effect of the nitrogen source on CAM photosynthesis arediscussed (Received January 5, 1988; Accepted April 13, 1988)  相似文献   

2.
When Kalanchoë blossfeldiana Poelln. cv. Hikan plants werecultured in solutions containing 0.2, 1.0, 5.0 or 10 mM of nitrateor ammonium under a long-day photoperiod, some criteria of CAM(Crassulacean acid metabolism) photosynthesis (diurnal changesof CO2 uptake, titratable acidity and malate content in leaves)were examined. The plants absorbed 90 to 100% of CO2 duringthe light phase regardless of the supplied nitrogen. Nitrate-grownplants absorbed about 10% of CO2 during the dark phase regardlessof the supplied concentration, whereas in ammonium-grown plantsthe nocturnal CO2 uptake occurred at 0.2 mM, at which the plantsdepleted nitrogen and no uptake was observed at the higher concentrations.Changes of nocturnal increase in titratable acidity and malatecontent almost corresponded with the changes in the amount ofnocturnal CO2 uptake. Also K. daigremontiana plants suppliedwith 10 mM of ammonium had a less CAM-like pattern of diurnalCO2 uptake than the plants supplied with 10 mM of nitrate. Theseresults suggest that a sufficient supply of ammonium depressesCAM photosynthesis.  相似文献   

3.
Carob seedlings were grown hydroponically for 9 weeks under360 and 800 µl l-1CO2. One of two nitrogen sources, nitrateor ammonium, was added to the nutrient medium at concentrationsof 3 mol m-3. Root systems of the developing plants suppliedwith nitrate compared to those supplied with ammonium were characterizedby:(a)more biomass on the lower part of the root;(b)fewer lateralroots of first and second order;(c)longer roots;(d)higher specificroot length;(e)a smaller root diameter. The morphology of theroot systems of nitrate-fed plants changed in the presence ofelevated carbon dioxide concentrations, resembling, more closely,that of ammonium-fed plants. Total leaf area was higher in ammonium-than in nitrate-fed plants. Nitrate-fed plants had greater totalleaf area in the presence of high carbon dioxide than in normalCO2, due to an increase in epidermal cell size that led to developmentof larger leaflets with lower stomatal frequency. The observedchanges in the morphology of roots and shoots agreed with theresults observed for total biomass production. Nitrate-fed plantsincreased their biomass production by 100% in the presence ofelevated CO2compared to 15% in ammonium-fed plants, indicatingthat the response of carob to high CO2concentrations is verydependent on the nitrogen source. Under elevated CO2, nitrate-grownplants had a larger content of sucrose in both roots and shoots,while no significant difference was observed in the contentof sucrose in ammonium-grown plants, whether in ambient or enrichedcarbon dioxide. Hence, the differences in soluble carbohydratecontents can, at least partly, account for differences in rootand shoot morphology.Copyright 1997 Annals of Botany Company Ceratonia siliquaL.; carob; ammonium; carbohydrate; carbon dioxide; nitrate; morphology; sucrose  相似文献   

4.
Rooted cuttings of Kalanchoë blossfeldiana cv. Feuer Bluteand K. crenatum failed to show a net dark CO2 fixation whenraised in dilute nutrient solution. Dark CO2 fixation (CAM)in these plants was initiated either by increasing the soluteconcentration or lowering the water potential of the nutrientsolution by addition of mannitol (0.11 M and 0.25 M) and carbowax4000 (0.16 M and 0.3 M). Initiation was also brought about byspraying the leaves with B-9 (N,dimethylamino-succinamicacid,300mg1–1) or by addition of CCC (2 chloroethyl trimethylammonium chloride, 300 or 750 mg1–1) to the nutrient medium.Failure of CAM in dilute solution was suggested to be due tolack of accumulation of photosynthates in the leaves. Waterstress and growth retardants brought about reduction of monilizationand/or translocation thereby leading to accumulation of assimilatesin the leaves and to initiation of dark CO2 fixation.  相似文献   

5.
A phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.3 [EC] ) activitywas associated with, the Percoll purified chloroplasts fromKalanchoe blossfeldiana leaves performing crassulacean acidmetabolism (CAM) (plants grown under short-day conditions).Very little PEPC activity was detected in the chloroplasts whenthe plants were grown under long days, performing a C3-typephotosynthetic metabolism. The PEPC activity measured in thechloroplasts from CAM-plants was very sensitive to such effectorsas glucose-6-phosphate (G-6-P) and malate: the initial activityof PEPC in the presence of 1.2 mM PEP was 400% activated by10 mM G-6-P and was 25% inhibited by 1 mM malate. These resultsshow that the PEPC in the chloroplasts has the enzymatic characteristicsdescribed by Brulfert and Queiroz [(1982) Planta 154: 339] forPEPC extracted from CAM-performing K. blossfeldiana leaves. (Received November 1, 1985; Accepted April 25, 1986)  相似文献   

6.
This paper reports autecological field-studies in Singaporeon Drymoglossum piloselloides (L.) Presl., an epiphytic fernof the humid tropics which is capable of performing Crassulaceanacid metabolism (CAM). As indicated by the gas exchange patternsand by the occurrence of a diurnal malic acid rhythm, the plantalso features CAM in situ at its natural sites. Both in well-wateredand in naturally droughted plants external CO2 was taken upsolely during the night. Water stress decreased nocturnal CO2uptake,but left the synthesis and storage of malic acid unaffected.This indicates that CO2 recycling of respiratory CO2 by CAMis ecophysiologically important at the high night temperaturestypical of the tropical habitats of the fern. The plants showeda diel fluctuation of cell-sap osmotic pressure which paralleledthat of malic acid, while the fluctuation of the xylem tensionfollowed the curve of transpiration more closely than it followedthat of the malic acid content. CAM in D. piloselloides wasclearly not limited by natural access to mineral ions and nitrogen.It is concluded that the ecophysiological advantage of CAM forD. piloselloides lies in a better water use efficiency as comparedwith C3 ferns and in the salvaging of carbon by CO2 recycling. Key words: CAM, epiphytic ferns, gas exchange, water relations  相似文献   

7.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

8.
Ota K 《Plant physiology》1988,87(2):454-457
Kalanchoë blossfeldiana Poelln. cv Hikan plants were grown hydroponically with nutrient solution containing 5 millimolar NO3 (or NH4+) for 1 to 2 months and then transferred to nutrient solution containing no nitrogen. CO2 uptake at night, nocturnal increase in titratable acidity, and activity of phosphoenolpyruvate carboxylase increased after the transfer. Thus, transfer to nitrogen-deficient conditions stimulates Crassulacean acid metabolism (CAM photosynthesis) in K. blossfeldiana. The importance of the plant nitrogen status (nitrogen-withdrawal status) for induction and stimulation of CAM photosynthesis is discussed.  相似文献   

9.
The effects of night-time temperature, leaf-to-air vapour pressuredeficit (VPD) and water stress on CO2 recycling in Bromeliahumilis Jacq. grown under two light and nitrogen regimes wereinvestigated. At night-time temperatures above 30°C, integratednet dark CO2 uptake was severely reduced and CO2 for malatesynthesis was mainly derived from dark respiration. At 35°C,up to 84% of the CO2 liberated by dark respiration was refixedinto malic acid. Below 30 °C only nitrogen deficient plantsshowed significant recycling. No significant differences wereobserved between high and low light grown plants in CO2 recycling.A doubling of leaf-to-air VPD from 7-46 Pa kPa–1 to 15.49Pa kPa–1 resulted in a 2- to 20-fold decrease in leafconductance and about 50 to 65% reduction in integrated darkCO2 uptake. However, about twice as much CO2 was recycled atthe higher VPD as in the lower. Ten days of water stress resultedin 80 to 100% recycling of respiratory CO2. Under high VPD andwater stress treatments, the amount of water potentially savedthrough recycling of CO2 reached 2- to 6-fold of the actualtranspiration. In general, nitrogen deficient plants had higherper cent recycling of respiratory CO2 in response to high night-timetemperature, increased VPD or water stress. The results emphasizethe ecological relevance of carbon recycling in CAM plants. Key words: Bromelia humilis, CAM, PPFD, dark respiration, temperature, VPD, water stress  相似文献   

10.
This study analyses the effects of salt on the effective symbiosisof faba bean (Vicia faba L. var. minor cv. Alborea) and salt-tolerantRhizobium leguminosarum biovar. viciae strain GRA19 grown withtwo KNO3 levels (2 and 8 mM). The addition of 8 mM KNO3 to thegrowth medium increases plant tolerance to salinity even witha concentration of 100 mM NaCl. This KNO3 level in control plantsreduced the N2 fixation. For 2 and 8 mM KNO3 the plants treatedwith NaCl reduced N2 fixation to identical values. The activityof the enzymes mediating ammonium assimilation in nodules (GS,NADH-GOGAT and NADH-GDH) was decreased by high KNO3 levels.The results show that NADH-GOGAT activity was more markedlyinhibited than was GS activity by salinity, therefore NADH-GOGATlimits the ammonium assimilation by nodules in V. faba undersalt stress. The total proline content in the nodule was notrelated to salt tolerance and thus does not serve as a salttoleranceindex for V. faba. Key words: Glutamate synthase, glutamine synthetase, N2 fixation, nitrate, salinity  相似文献   

11.
CAM induction by photoperiodism in green callus cultures from a CAM plant   总被引:1,自引:1,他引:0  
Abstract Green calli obtained from leaves of the CAM-inducible plant Kalanchoe blossfeldiana cv. Montezuma were grown either under long-day or short-day regimes in the Phytotron of Gif-sur-Yvette. Callus cells were found to be CAM inducible by the short-day treatment, according to levels and diurnal oscillations of malate pools and phosphor-enolpyruvate (PEP) carboxylase (EC.4.1.1.31) capacity. De novo synthesis of PEP carboxylase was shown to occur under the short-day regime. In spite of continuous net CO2 output, CAM-like patterns of CO2 exchange by calli were obtained under the short-day treatment. After 2 months under both photoperiodic conditions, spontaneous organogenesis in callus tissues gave rise to numerous shootlets which were determined as photoperiod dependent for CAM; the same was so for plants originating from these shootlets.  相似文献   

12.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

13.
顾舒平  尹黎燕  李洁琳  李伟   《植物生态学报》2009,33(6):1184-1190
 运用pH-drift的方法研究了在不同碱度条件下中华水韭(Isoetes sinensis)的沉水叶片昼夜CO2吸收的特征。结果表明中华水韭的沉水叶片具有昼夜吸收水中CO2的能力, 而不具备利用水中的HCO 3的能力, 进一步证明了水生植物中华水韭的光合碳同化途径具有景天酸代谢(CAM)的特征。中华水韭沉水叶片光照条件下对水中CO2的吸收速率在一定的浓度范围内正相关于水中的CO2浓度。光照条件下, 中华水韭的pH-drift实验的pH补偿点分别为(8.1±0.3)和(7.9±0.1) mmol·L–1, 最终[CT]/Alk值为(1.009±0.01)和(1.022±0.004)。碱度对中华水韭夜晚CO2的吸收速率有显著的影响(F = 38.73, p < 0.000 1)。总碱度1.70 mmol·L–1溶液中的中华水韭沉水叶片在相对较低的CO2浓度(0.04±0.001 mmol·L–1)水平下即表现出对CO2的净吸收。调查了野外一处中华水韭沉水种群的生境pH值及CO2浓度的昼夜变化, 发现水体碱度约为1.59 mmol·L–1, 一昼夜的pH值波动不大, 平均为(6.1±0.04), 昼夜CO2浓度存在波动, 午夜水中的CO2浓度是午后的近3倍。  相似文献   

14.
The effects of water stress (drought) on the pattern of photosynthesisin Sedum telephium have been determined. Well-watered plantsexhibit a weak-CAM pattern, with substantial CO2 fixation inthe day, a low level of CO2 fixation at night, high daytimestomatal conductance with a lower conductance at night, andno diurnal fluctuation in acid content. Imposition of water-stress causes a switch from weak-CAM toa full-CAM mode of photosynthesis, as indicated by cessationof daytime CO2 fixation, a marked increase in night-time CO2fixation, very low daytime stomatal conductance, increased night-timeconductance and significant diurnal fluctuations in acid content. Sedum telephium, CAM, CO2 fixation, drought, malate, photosynthesis, water stress  相似文献   

15.
Lee, H. S. J. and Griffiths, H. 1987. Induction and repressionof CAM in Sedurn relephluni L. in response to photopcnod andwater stress.—J. exp. Bot. 38: 834–841. The introduction and repression of CAM in Sedurn telephiunmL, a temperate succulent, was investigated in watered, progressivelydrouglited and rewatered plants in growth chambers. Measurementswere made of water vapour and CO2 exchange, titratable acidity(TA) and xylem sap tension. Effects of photoperiod were alsostudied. CAM was induced by drought under long or short days,although when watered no CAM activity was expressed. C3-CAM intermediate plants were used for the investigation ofwater supply. Those which had received water and those drought-stressedboth displayed a similar nocturnal increase in TA, with a day-nightmaximum (H+) of 69 µmol g–1 fr. wt. The wateredplants took up CO2 at a maximum rate of 2?2 µmol m–2s–1 only in the light period, while the droughted plantsshowed a maximum nocturnal CO2 uptake rate of 0?69 µmolm–2 s–1. Subsequently, as CAM was repressed, thewatered S. telephiwn displayed little variation in TA, withconstant levels at 42 µmol g–1 fr. wt. (day 10).After 10 d of drought stress, the CAM characteristics of S.telephiurn were aLso affected, with reduced net CO2 uptake andH+. The transition between C3 and CAM in S. telephium can be describedas a progression in terms of the proportion of respiratory CO2which is recycled and refixed at night as malic acid, in comparisonwith net CO2 uptake. Recycling increased from 20% (day 1) to44% (day 10) as a result of the drought stress and was highin both the CAM-C3 stage (no net CO2 uptake at night) and alsoin the drought-stressed CAM stage (reduced net CO2 uptake atnight). The complete C3-CAM transition occurred in less than8 d, and the stages could be characterized by xylem sap tensionmeasurements: CAM = 0?50 MPa C3-CAM = 0?36 MPa C3 = 0?29 MPa. Key words: CAM, Sedum telephium L., recycling  相似文献   

16.
Influx of nitrate into the roots of intact barley plants wasfollowed over periods of 1–15 min using nitrogen-13 asa tracer. Based on measurements taken over 15 min from a rangeof external nitrate concentrations (0·2–250 mmolm–3), the kinetic parameters of influx, Imax and Km, werecalculated. Compared with plants grown in the presence of nitrate throughout,plants that had been starved of N for 3 d showed a significantlygreater value ofImax for 13N-nitrate influx (by a factor of1·4–1·8), but a similar value of Km (12–14mmol m–3). Pre-treating N-starved plants with nitratefor about 5 h further increased the subsequent rate of 13N-nitrateinflux, but had little effect in the unstarved controls. Allowingfor this induction of additional nitrate transport, the differencein rates of nitrate influx in control and N-starved plants wassufficient to account for the previously-observed differencein net uptake by the two groups of plants. In barley plants grown without any exposure to nitrate, butwith ammonium as N-source, both Imax and Km for subsequent 13N-nitrateinflux were significantly decreased (by about one-half) comparedwith the corresponding nitrate-grown controls. The importance of changes in the rate of influx in the regulationof net uptake of nitrate is discussed. Key words: Ion transport, nitrate, influx, kinetic parameters, N-deficiency  相似文献   

17.
The effects of growth at elevated CO2 on the response to hightemperatures in terms of carbon assimilation (net photosynthesis,stomatal conductance, amount and activity of Rubisco, and concentrationsof total soluble sugars and starch) and of photochemistry (forexample, the efficiency of excitation energy captured by openphotosystem II reaction centres) were studied in cork oak (Quercussuber L.). Plants grown in elevated CO2 (700 ppm) showed a down-regulationof photosynthesis and had lower amounts and activity of Rubiscothan plants grown at ambient CO2 (350 ppm), after 14 monthsin the greenhouse. At that time plants were subjected to a heat-shocktreatment (4 h at 45C in a chamber with 80% relative humidityand 800–1000 mol m–2 s–1 photon flux density).Growth in a CO2-enriched atmosphere seems to protect cork oakleaves from the short-term effects of high temperature. ElevatedCO2 plants had positive net carbon uptake rates during the heatshock treatment whereas plants grown at ambient CO2 showed negativerates. Moreover, recovery was faster in high CO2-grown plantswhich, after 30 min at 25C, exhibited higher net carbon uptakerates and lower decreases in photosynthetic capacity (Amax aswell as in the efficiency of excitation energy captured by openphotosystem II reaction centres (FvJFm than plants grown atambient CO2. The stomata of elevated CO2 plants were also lessresponsive when exposed to high temperature. Key words: Elevated CO2, temperature, acclimation, photosynthesis, Quercus suber L.  相似文献   

18.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

19.
The mechanisms underlying the drought tolerance of Peperomiacarnevalii Steyermark (Piperaceae), a succulent herb growingin the understorey of seasonally dry forests, were examined.Crassulacean acid metabolism (CAM) was studied in the fieldand laboratory, and measurements of water status were made inplants subjected to drought in the greenhouse. Nocturnal acidaccumulation and day and night-time CO2assimilation rates weregreatest in watered plants and decreased in drought. The proportionof CO2recycled through CAM in droughted plants, with nocturnalCO2uptake close to zero, was higher than in watered plants.Maximum quantum yield of chlorophyll fluorescence remained unchangedduring drought, but the PSII quantum yield at the photosyntheticphoton flux density at which the plants were grown was significantlydecreased. Leaf anatomy consists of a chlorophyll-less hydrenchymalocated beneath the upper epidermis, and a two-layered mesophyll.Leaves nearer to the apex are thinner than those nearer to thebase of the shoot. Drought caused a reduction in leaf thicknessdue to shrinkage of the hydrenchyma, but not of the mesophyll.This was associated with the occurrence of a gradient of osmoticpotential between these tissues. Comparison of water loss fromthin leaves of watered and droughted plants, either partly defoliatedat the lower nodes or intact, suggested that water moved fromthe thick to the thin leaves. This process was related to theoccurrence of a gradient of water potential between the thickand the thin leaves. Drought tolerance in P. carnevalii is achievedby the operation of CAM and the occurrence of water movementwithin and between leaves. Copyright 2000 Annals of Botany Company Crassulacean acid metabolism, fluorescence, hydrenchyma, mesophyll, Peperomia carnevalii, water relations  相似文献   

20.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号