首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Treatment of Friend leukemia cells with BrdU, the thymidine analog which interferes with DMSO induced differentiation in these cells as well as the expression of differentiated character in many other cell systems, is capable of inducing erythroid differentiation. Globin mRNA, as assayed by hybridization to globin cDNA, increases 2.5- to 30-fold after appropriate treatment with BrdU. This effect was observed with several different subclones of three independent Friend tumor cell lines. After BrdU treatment, globin mRNA content may reach up to 10-20% of the levels in DMSO induced cultures. The induction of erythroid differentiation is also apparent when accumulated heme content or the appearance of benzidine positive cells is monitored. One Friend cell line (745) we examined was not induced by BrdU although it incorporated an amount of BrdU into its DNA comparable to that incorporated by the other cell lines. In addition, BrdU did interfere with DMSO induction in this cell line. These results suggest that two different mechanisms may be operative in regulating erythroid differentiation in Friend leukemia cells. While BrdU interferes with the mechanism activated by DMSO treatment, this analog could independently activate an alternative mechanism.  相似文献   

2.
Terminal differentiation in cultured Friend erythroleukemia cells.   总被引:10,自引:0,他引:10  
E A Friedman  C L Schildkraut 《Cell》1977,12(4):901-913
Two populations of differentiated, hemoglobin-containing cells have been identified in cultures of Friend murine erythroleukemia cells (Friend cells): terminally differentiated benzidine-positive (B+) cells that are no longer capable of proliferation and are arrested in the G1 phase of the cell cycle, and their precursors, traversing B+ cells which undergo two or three cell divisions before reaching their terminally differentiated state. Thus Friend cells in suspension culture retain a limited capacity to synthesize DNA and divide after commitment to erythroid differentiation. We identified terminally differentiated cells using autoradiography after benzidine staining. We also developed a quantitative flow microfluorometric assay to distinguish cells that are terminally differentiated from those cells committed to differentiation but still capable of proliferation.We developed a purification procedure to isolate terminally differentiated Friend cells. Their DNA content was the same as that of the undifferentiated cells in G1 by both the diphenylamine reaction and a fluorescence assay. No loss of DNA was detected during the differentiation of Friend cells. As many as 72% of the total cells in a culture induced with DMSO (88% B+) were differentiated cells arrested in G1. As a control, a DMSO-resistant line derived from 745A neither differentiated nor arrested in G1 after growth in the presence of DMSO. The results of these studies were obtained using several compounds that induce differentiation and three independently isolated clones of 745A. We also observed arrest of differentiated cells in G1 with the two other well characterized, independently derived erythroleukemia cell lines, F4-1 and T3-C1-2.  相似文献   

3.
Carbonic anhydrase activity is increased in Friend erythroleukemia (FL) cells during the enhancement of erythroid differentiation in the presence of dimethylsulfoxide (DMSO) or butyric acid. Untreated FL cells show an increase in enzyme activity associated with logarithmic growth. The increase in the specific activity of carbonic anhydrase in the differentiating treated cells, however, appears to be due to at least two additional general mechanisms: (1) an induction of carbonic anhydrase paralleling the stimulation of hemoglobin synthesis and (2) the stability and/or retention of active carbonic anhydrase as compared to most of the other cell proteins. The stimulation of carbonic anhydrase activity in the treated cells is inhibited by 5-bromo-2'-deoxyuridine (BrdU). This is the first demonstration of BrdU inhibition of a DMSO induced product not directly related to hemoglobin.  相似文献   

4.
Erythroid differentiation of Friend leukemia cells is enhanced when the cells are grown for four days in the presence of dimethylsulfoxide (DMSO). Dimethylformamide (DMF) has a similar though less marked effect. 5-Bromo-2′-deoxyuridine (BUdR) (10?5M) inhibits both DMF- and DMSO-stimulated differentiation. For maximum inhibition, BUdR must be present during the first two days of growth, during which time DNA synthesis is maximal. The addition of BUdR after the third day has no effect. Since BUdR is incorporated into DNA and thymidine prevents BUdR inhibition of DMSO-stimulated differentiation, it is likely that BUdR acts by virtue of its incorporation into DNA. Although BUdR alone had little effect upon cell multiplication, in combination with DMSO, cell growth was inhibited up to 40%. Since the BUdR-inhibition of the DMSO effect was approximately 70%, it is unlikely that its effect on differentiation is due to selective killing of those cells which are stimulated to differentiate.  相似文献   

5.
The inclusion of DMSO in the media of suspension cultures of Friend erythroleukemia cells results in the erythroid differentiation of these cells. The studies reported here were directed towards answering two questions. (1) How long an exposure to DMSO is necessary to induce the differentiation of these cells; and (2) What is the fate of the differentiating cells when DMSO is removed from the medium. Exposure to DMSO for less than 24 hours failed to produce any detectable evidence of erythroid differentiation. On the other hand, culture in the presence of DMSO for 24 hours followed by culture in DMSO-free medium for four additional days produced a small but detectable increment in the proportion of benzidine positive cells in the culture. Once the differentiation of an individual cell was initiated, the process continued after removal of DMSO from the medium. The cell became progressively more differentiated as evidenced by increases in the intensity of benzidine staining as well as the rate of heme synthesis and heme content. However, when cells which had been induced to differentiate by DMSO were cultured in DMSO-free medium for more than 3--4 days, they became vacuolated and apparently died. This latter phenomenon, as well as the more rapid proliferation of the undifferentiated cells in the culture, accounts for the observation that when new cultures are established from cultures which have been grown in the presence of DMSO for several days, the culture which results ultimately contains only differentiated cells.  相似文献   

6.
These studies were undertaken to examine the relationship between the inhibition by 5-bromodeoxyuridine (BrdU) of erythroid differentiation in Friend erythroleukemia cells and the incorporation of BrdU into DNA. Experiments were carried out in which the incorporation of BrdU into DNA and the concentration of BrdU to which the cells were exposed were varied independently of each other. In addition, the ability of deoxycytidine (dC) to reverse the effects of BrdU on hemoglobin production and to reduce the amount of BrdU in DNA was analyzed. Under all the conditions tested, the effects of BrdU were correlated with the amount of BrdU incorporated into nuclear DNA. These results differ from those of recent studies on the inhibition of pigmentation and the induction of mutations by BrdU in Syrian hamster melanoma cells. The results suggest that BrdU may be producing its biological effects by a variety of different mechanisms.  相似文献   

7.
Friend leukemia cells differentiate when any one of a variety of cryoprotective agents are added to their suspension culture media. While dimethyl sulfoxide (DMSO), dimethylacetamide (DMA) and tetramethylurea (TMU) induce a comparable degree of erythroid maturation their effects on the acid soluble ribonucleotide pools differ. DMSO induced differentiation is accompanied by a 70–80% reduction in pool size while DMA and TMA cause only a 15–20% reduction. Furthermore, inhibition of DMSO-induced differentiation by BUdR does not prevent the DMSO-induced reduction in pool size. These data suggest that the decline in pool size is a toxic effect unrelated to differentiation and these effects should be considered when the biological effects of DMSO-induced differentiation are considered.  相似文献   

8.
Regulation of erythroid differentiation by vitamin D3 derivatives was examined in Friend erythroleukemia cells. After Friend cells were cultured for 5 days with 1.5% dimethyl sulfoxide (DMSO), as much as 70% of the cells became benzidine-positive and the hemoglobin content increased in parallel with the increase of benzidine-positive cells. The DMSO-induced erythroid differentiation was markedly inhibited by concurrent addition of the active form of vitamin D3, 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. Of the vitamin D3 derivatives tested, 1 alpha,25(OH)2D3 was the most potent in inhibiting DMSO-induced erythroid differentiation. 1 alpha,25(OH)2D3 alone was totally ineffective in both cell growth and erythroid differentiation. These results together with our previous reports indicate that 1 alpha,25(OH)2D3 is somehow involved not only in myeloid differentiation, but also in erythroid differentiation.  相似文献   

9.
Erythrocyte membrane antigens have been detected on induced Friend erythroleukemic cells with a rabbit antiserum raised against mouse erythrocyte membranes. The antibody specificities of this antiserum have been quantitatively analyzed using a cellular radioimmunoassay. After absorption with thymocytes, the rabbit anti-erythrocyte membrane serum bound to dimethylsulfoxide (DMSO)-induced Friend erythroleukemic cells and to mouse erythrocytes but not to uninduced Friend cells or thymocytes. Reciprocal inhibition studies demonstrated that, following complete thymocyte absorption, the antiserum detected similar antigenic specificities, termed erythrocyte membrane antigens (EMA), on both mature erythrocytes and induced Friend cells. The expression of these erythrocyte membrane antigens was also induced on Friend cells by other agents, such as ouabain and dimethylacetamide (DMA). In contrast, exogenous hematin, which did not induce hemoglobin synthesis in the Friend cell clones used in this study, also did not induce erythrocyte membrane antigen expression. Two independently derived variant clones which do not produce hemoglobin in reponse to DMSO were analyzed for their ability to produce erythrocyte membrane antigens in response to various inducers of Friend cell differentiation. Clone TG-13 is not inducible by DMSO or hematin but is weakly induced by DMA for both hemoglobin production and erythrocyte membrane antigen expression. Another variant clone, M18, was also analyzed. This clone does not synthesize detectable hemoglobin when grown in either DMSO or hematin alone, but undergoes extensive hemoglobin synthesis when grown in medium containing both DMSO and hematin. M18 does, however, express erythrocyte membrane antigens when grown in DMSO alone: the presence of hematin and DMSO together in the growth medium does not enhance expression of these antigens. Thus M18 appears to be defective for hemoglobin inducibility, and this defect can be overcome by exogenous hematin; however, the expression of erythrocyte membrane antigens is not affected by this block in hemoglobin synthesis. The results with the variant clones are discussed in terms of a program for Friend cell differentiation in which the induction of hemoglobin synthesis and erythrocyte membrane antigen expression are under both co-ordinate and separate controls.  相似文献   

10.
Elevated concentrations of cyclic AMP elicit only minor reductions in growth rate and saturation density in undifferentiated Friend erythroleukemic cells. During the course of dimethylsulfoxide (DMSO)-induced differentiation, Friend cells convert from a cyclic AMP-tolerant state to a phenotype characterized by a high degree of sensitivity to cyclic AMP-mediated growth arrest. Conversion to cyclic AMP sensitivity is detectable after 30 hours growth in medium containing 2% DMSO, and either 0.5 mM 8-Br-cyclic AMP or 5 nM cholera toxin. Cultures of differentiating Friend cells achieved a stationary phase density that was approximately 8-fold higher than the cell density observed in parallel, differentiating cultures treated with 0.5 mM 8-Br-cyclic AMP. Temporally, the appearance of cyclic AMP-sensitivity corresponds to the early expression of in vitro erythroid differentiation (Ross et al., '74), but growth arrest does not alter the subsequent accumulation of hemoglobin in non-dividing DMSO-induced cells. Since growth arrest is preceded by a round of cell division, these observations are consistent with the concept that DMSO must be present during DNA replication for the subsequent expression of hemoglobin synthesis (McClintock and Papaconstantinou, '74; Levy et al., '75; Harrison, '76).  相似文献   

11.
Enhancement of the erythroid maturation in Friend virus-induced leukemic cells has been examined in vitro by the treatment with dimethyl sulfoxide (DMSO). Although the cell growth was inhibited in the medium containing 2% DMSO, many cells remained viable for a week. By the 3rd day of the culture, the cells treated with DMSO became more strongly agglutinated by phytohemagglutinin than the cells incubated without DMSO. Mouse erythrocyte membrane-specific antigens were also detectable at the 4th day. At the 8th day of the culture hemoglobin synthesis was apparently demonstrated in the cells treated with DMSO, which could not be seen in the untreated cells. Maturation or differentiation along the erythroid pathway in Friend leukemic cells by DMSO is discussed on these markers.  相似文献   

12.
Friend erythroleukemic cells can be induced to differentiate by growth in high-K+ medium. Growth of Friend cells in medium containing 60–90 mM K+ and 90-60 mM Na+ (keeping the osmotic pressure constant) induced differentiation as measured by iron-59 incorporation into heme, accumulation of globin mRNA, the appearance of benzidine-positive cells, and the expression of erythrocyte membrane antigens. In addition, these “high-K+, low-Na+” conditions were synergistic with low doses of dimethylsulfoxide (DMSO) for the induction of erythroid differentiation. Not all Friend cell clones examined could be induced to differentiate in high-K+, low-Na+ medium alone, but the synergism between DMSO and high-K+, low-Na+ was observed in all cases.  相似文献   

13.
14.
An intracellular activity, which is induced by dimethyl sulfoxide (DMSO) or hexamethylenebisacetamide (HMBA) and leads to erythroid differentiation in mouse Friend cells, was characterized by cell fusion between genetically marked intact cells and cytoplasts. For this, a procedure for rapid selection of cybrids was devised by sensitizing non-fused cells with oligomycin. We were able to demonstrate that cytoplasts derived from DMSO- (or HMBA)-treated cells trigger erythroid differentiation upon fusion with UV-irradiated cells. The activity in the cytoplasts remained only transiently and its induction was inhibited by biologically active phorbol esters or cycloheximide. The activity, however, was not induced in cytoplasts by directly treating them with DMSO (or HMBA). These results indicate that (1) the intracellular erythroid-inducing activity is located in cytoplasts, (2) it acts in trans and induces erythroid differentiation as a dominant factor and (3) its production requires de novo nuclear protein synthesis. The mechanisms of the induction of the intracellular activity and of how it triggers erythroid differentiation are discussed.  相似文献   

15.
Friend erythroleukemic cells can be used as a model of erythroid cell differentiation with the synthesis of the erythrocyte-specific products hemoglobin and spectrin stimulated by agents such as DMSO. In the present study we investigated the expression of both erythroid spectrin and non-erythroid fodrin in uninduced and DMSO-treated Friend cells. We report that both spectrin and fodrin co-exist at low levels in uninduced Friend cells and both are induced by treatment with DMSO. After longer times both spectrin and fodrin appear to undergo rearrangements into submembranous ‘patches’ and ‘caps’. Although both molecules co-localize in most of these cells, they can be independently immunoprecipitated, suggesting that significant amounts of hybrid molecules are not formed.  相似文献   

16.
Friend murine erythroleukaemia (F-MEL) cells are a useful model for studying the processes that regulate erythroid differentiation since exposure of these cells to chemical inducers (DMSO or HMBA) results in commitment to terminal cell division and synthesis of haemoglobin. This study examined the relationship between differentiation and apoptosis in DMSO sensitive and resistant F-MEL cells. Clear apoptosis was not observed in DMSO-treated sensitive F-MEL (strain 745A) cells during the induction of differentiation. In contrast, DMSO-induced 745A cells exhibited delayed apoptosis compared to uninduced cells. Since the Bcl-2 family members play a major role in the control of apoptosis and/or differentiation, we determined their expression before and after DMSO or HMBA treatment. Neither untreated nor chemically-induced 745A cells expressed the Bcl-2 protein. The levels of Bax and Bad proteins remained relatively constant during DMSO-induced differentiation. DMSO or HMBA treatment of 745A cells induced a marked increase of Bcl-XL expression during the late phase of differentiation which persisted even when the cells began to die. This upregulation of Bcl-XL was independent of cell density but was correlated with cell arrest in G0/G1. DMSO treatment induced a similar delay of apoptosis and enhancement of Bcl-XL expression in F-MEL (strain TFP10) cells which fail to synthesize haemoglobin in the presence of DMSO. Dexamethasone, which blocks DMSO-induced differentiation of F-MEL cells, prevented the induction of Bcl-XL. Inhibitors such as imidazole or succinylacetone, which inhibit haemoglobin synthesis but not commitment to terminal cell division, did not suppress Bcl-XL induction in DMSO-induced cells. Taken together, these results indicate that DMSO treatment of F-MEL cells induces a marked increase in Bcl-XL expression suggesting a role for this anti-apoptotic protein in the process of erythroid differentiation in F-MEL cells. Moreover, induction of Bcl-XL during this process seems to be associated with loss of proliferative capacity rather than with haemoglobin synthesis.  相似文献   

17.
tsAEV-LSCC HD3 chicken erythroid cells transformed by the avian erythroblastosis virus (AEV) secrete an autocrine differentiation-inhibiting factor, ADIF, which blocks differentiation without affecting proliferation of the chicken erythroid cells that synthesize and secrete it into the culture medium. The chicken erythroleukemia cell ADIF activity is not restricted to avians. It prevents dimethylsulfoxide (DMSO) from stimulating murine Friend erythroleukemia cells to synthesize hemoglobin. ADIF also blocks erythroid differentiation in normal human and murine bone marrow where it selectively targets the early BFU-E (burst-forming) erythroid precursor cells without affecting the more advanced CFU-E erythroid precursor cells or cells of the different granulocyte-macrophage lineage.  相似文献   

18.
A complementary DNA probe has been prepared from the Friend murine erythroleukaemia virus complex (FV) released from Friend cells treated with dimethylsulphoxide (DMSO). The complementary DNA (cDNA) forms a hybrid specifically with the viral RNA genome. The availability of this viral probe together with mouse globin cDNA has made it possible to study the expression of both viral and globin genes in the Friend cell during differentiation using molecular hybridisation techniques. These specific probes have been used in an attempt to determine whether any connection exists between expression of Friend virus sequences and erythroid differentiation as measured by globin gene expression. A titration technique has been used to quantitate the levels of Friend viral- and globin-specific sequences in various Friend cell lines which differ in their ability to release Friend virus in response to DMSO although all produce haemoglobin under the same conditions. The results show: (a) that Friend cell lines unable to release virus nevertheless have a large pool of entire virus specific sequences in the polysomes; (b) an increase in virus release induced with DMSO is normally associated with a modest increase in viral sequence in the polysomes; (c) most cell lines show an early accumulation of viral and a later increase in globin mRNA sequences; (d) in an exceptional virus-negative, BUdR-resistant cell clone (B8/3), the accumulation of globin mRNA takes place very rapidly but there is no concomitant increase in viral RNA during differentiation.  相似文献   

19.
Induction of erythroid differentiation has been investigated in a cell hybrid formed between an inducible Friend cell and a lymphoma line (L5178Y) derived from the same strain of mouse (DBA/2). Although globin messenger RNA (mRNA) is induced by DMSO to a level similar to that in the inducible Friend cell parent (about 9 000 molecules/cell) haemoglobin does not accumulate in detectable amounts, nor do morphological changes characteristic of terminal differentiation occur. This failure to accumulate haemoglobin in response to DMSO is due to a reduced rate of globin chain synthesis (6% of total protein synthesis, compared to 25% for the parental Friend cell), and partly to inability of the globin chains synthesized to form tetrameric haemoglobin molecules. Globin chain instability is not the reason why haemoglobin does not accumulate. In comparison, treatment of the hybrid cells with haemin induces about 14% globin synthesis and about 13 000 globin mRNA molecules. These values are somewhat higher than with DMSO. Treatment of hybrid cells with haemin plus DMSO is even more effective; it induces 25% globin synthesis and about 30 000 globin mRNA molecules and terminal differentiation also occurs normally. Whether treated with DMSO or haemin or both, virtually all the globin mRNA molecules seem to be present in polysomes and are therefore presumably in the process of being translated. These results suggest that failure of differentiation in these hybrid cells is due to haem limitation which also prevents the expression of other co-ordinated erythroid functions.  相似文献   

20.
The addition of a chemical inducer, such as dimethylsulfoxide (DMSO), to cultures of mouse Friend erythroleukemic cells results in the induction of a number of late erythroid events, including the accumulation of globin mRNA, the inducation of hemoglobin synthesis, the appearance of erythrocyte membrane antigens (EMA), and the cessation of cell division. The experiments presented in this study demonstrate that heme is necessary but not sufficient for the loss of proliferative capacity associated with DMSO-induced Friend cell differentiation, whereas the accumulation of globin mRNA and EMA can occur in the absence of heme synthesis or heme itself. These conclusions were reached by selectively inhibiting heme synthesis in DMSO-treated cells in two independent ways: (i) Inducible cells were treated with 3-amino-1,2,4-triazole (AT), a drug which inhibits the induction of heme synthesis in Friend cells in a dose-dependent manner. Treatment of inducible Friend cells with 1.5% DMSO for five days caused the plating efficiency in methyl cellulose to decrease to 1% of that in untreated cultures. However, treatment of the cells with DMSO plus AT almost totally prevented this decrease in plating efficiency. The addition of exogenous hemin, which alone had no significant effect on plating efficiency, largely reversed the effect of AT in DMSO-treated cells, reducing the plating efficiency to below 5%. In contrast to the marked effects of AT on the proliferative capacity of differentiating Friend cells, the levels of globin mRNA and EMA were only partially decreased in cells treated with DMSO plus AT, compared to cells treated with DMSO alone. (ii) The relationship between heme synthesis, terminal cell division, and the induction of globin mRNA was investigated further through the use of non-inducible Friend cell variant clones. One such non-inducible clone, M18, appears to be a phenotypic analog of inducible cells treated with DMSO plus AT. Clone M18 did not accumulate heme or hemoglobin, as detected by benzidine staining, nor lose its proliferative capacity in response to DMSO. However, globin mRNA was induced by DMSO in this clone. Treatment of clone M18 with DMSO plus hemin overcame the block in hemoglobin accumulation suggesting that M18 has a defect in the induction of heme biosynthesis. In addition, exposure of M18 cells to DMSO plus hemin caused a gradual decrease in plating efficiency which was not due to non-specific toxicity. Prior incubation of M18 cells in DMSO for three to five days was necessary before hemin caused a rapid loss of proliferative capacity. Thus, these results, in agreement with the AT studies on inducible Friend cells and previous studies on the induction of EMA in clone M18, indicate that there may be both heme-dependent and heme-independent events in the program of Friend cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号