首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From reed biofilm samples of Kelemen-szék (Kiskunság National Park, KNP) and Nagy-Vadas (Hortobágy National Park, HNP) altogether 260 bacterial isolates were gained after serial dilutions and plating onto different media. Following a primary selection 164 strains were investigated by "traditional" phenotypic tests and clustered by numerical analysis. Fifty-six representative strains were selected to ARDRA and 16S rDNA sequence analysis for identification. Strains were identified as members of genera Agrobacterium, Paracoccus, Halomonas, Pseudomonas, Bacillus, Planococcus and Nesterenkonia. The species diversity was also investigated by a cultivation independent method. A clone library was constructed using the community DNA isolated from the biofilm sample of Kelemen-szék. Screening of the 140 bacterial clones resulted in 45 different ARDRA groups. Sequence analysis of the representatives revealed a great phylogenetic diversity. A considerable majority of the clones was affiliated with uncultured bacterial clones (with sequence similarity between 93 and 99%) originating from diverse environmental samples (for example salt marshes, compost or wastewater treatment plants). The DNA sequences of other clones showed the presence of genera Flavobacterium, Sphingobacterium, Pseudomonas and Agrobacterium.  相似文献   

2.
The phylogenetic species richness of the bacteria in the gut of the termite Reticulitermes flavipes was examined using near full-length 16S rRNA gene sequencing and amplified rDNA restriction analysis (ARDRA). We amplified the genes by polymerase chain reaction (PCR) directly from a mixed population of termite gut bacteria and isolated them using cloning techniques. Sequence analysis of 42 clones identified a broad taxonomic range of ribotypes from six phyla within the domain Bacteria: Proteobacteria, Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and the recently proposed “Endomicrobia.” Analysis of the sequence data suggested the presence of a termite specific bacterial lineage within Bacteroidetes. The ARDRA data included 261 different ARDRA profiles of 512 clones analyzed. These data suggest the gut flora in R. flavipes is extremely diverse.  相似文献   

3.
Diversity of bacterial community in freshwater of Woopo wetland   总被引:1,自引:0,他引:1  
Diversity of bacterial community in water layer of Woopo wetland was investigated. Cultivable bacterial strains were isolated by the standard dilution plating technique and culture-independent 16S rRNA gene clones were obtained directly from DNA extracts of a water sample. Amplified rDNA restriction analysis (ARDRA) was applied onto both of the isolates and 16S rRNA gene clones. Rarefaction curves, coverage rate and diversity indices of ARDRA patterns were calculated. Representative isolates and clones of all the single isolate/clone phylotype were partially sequenced and analyzed phylogenetically. Sixty-four and 125 phylotypes were obtained from 203 bacterial isolates and 235 culture-independent 16S rRNA gene clones, respectively. Bacterial isolates were composed of 4 phyla, of which Firmicutes (49.8%) and Actinobacteria (32.0%) were predominant. Isolates were affiliated with 58 species. Culture-independent 16S rRNA gene clones were composed of 8 phyla, of which Proteobacteria (62.2%), Actinobacteria (15.5%), and Bacteroidetes (13.7%) were predominant. Diversity of 16S rRNA gene clones originated from cultivation-independent DNA extracts was higher than that of isolated bacteria.  相似文献   

4.
An investigation of bacterial diversity in compost was performed using molecular chronometer in order to reveal its phylogeny. Thirty-three bacterial isolates isolated from compost were analyzed by 16S rRNA gene sequencing which revealed phylogenetic lineage of class Bacilli, γ, β-Proteobacteria, and Actinobacteria. Among these lineages, isolates belonging to class Bacilli consisted of species from genera Staphylococcus, Bacillus, Terribacillus, and Lysinibacillus. From phylum Actinobacteria: Microbacterium barkeri and Kocuria sp. were identified. Other bacterial groups had phylogenetic linkage with genera Comamonas and Acidovorax (class β-Proteobacteria); Serratia, Klebsiella, and Enterobacter (class γ-Proteobacteria). Similar isolates were analyzed through ARDRA. Amplified product of 16S rRNA gene from each isolates was subjected to cleavage by enzymes HpaII, HinfI, and MspI in separate reaction tubes. HpaII generated 2–6 bands ranging from 90–688 bp, HinfI generated 2–5 bands of 71–1,038 bp, and MspI 2–7 bands of 69–793 bp. The restriction patterns from HpaII, HinfI, and MspI were normalized separately and combined by means of pattern recognition software “Diversity Database.” HpaII had highest discrimination index (0.72) than HinfI (0.68) and MspI (0.65), and the combination of all three showed discrimination index (0.69). Numerical analysis of ARDRA patterns demonstrated sufficient phylogenetic information for characterizing bacterial diversity. Phylogenetic relationship obtained among isolates through ARDRA was compared with 16S rRNA gene sequence and ARDRA results showed sufficiently similar 16S rRNA gene sequence analysis, but not an overlapping. It has been observed that ARDRA technique facilitates the identification of bacteria in less than 36 h as compared to traditional 16S rRNA gene sequencing.  相似文献   

5.
Archaeal Diversity in the Haloalkaline Lake Elmenteita in Kenya   总被引:1,自引:0,他引:1  
A non-culture approach was used to study the archaeal diversity in Lake Elmenteita, Kenya. Five different sampling points were selected randomly within the lake. Wet sediments and water samples were collected from each sampling point. In addition, dry mud cake was collected from three points where the lake had dried. DNA was extracted from these samples and the 16S rRNA genes were amplified using primers described to be Domain-specific for Archaea. Eleven clone libraries were constructed using PCR-amplified 16S rRNA genes. A total of 1,399 clones were picked and analysed via ARDRA. 170 ARDRA patterns were unique and the respective clones were selected for sequencing. 149 clones gave analysable sequences. BLAST analysis showed that 49 belong to the Domain Archaea while the others were either chimera or affiliated to eukaryotic taxa. Comparative sequence analysis of archaeal clones affiliated them to a wide range of genera. The order Halobacteriales was represented by members of the genera Natronococcus, Halovivax, Halobiforma, Halorubrum, and Halalkalicoccus. The highest percentage (46%) of the clones, however, belonged to uncultured members of the Domain Archaea in the order Halobacteriales. The results show that the archaeal diversity in the lake could be higher than previously reported.  相似文献   

6.
Bacterial diversity in the rhizosphere of beach morning glory (Calystegia soldanella) and wild rye (Elymus mollis), two of the major plant species inhabiting the coastal sane dune in Tae-An, Korea, was studied by the analysis of community 16S rRNA gene clones. The amplified rDNA restriction analysis (ARDRA) of the clones using HaeIII exhibited significant differences in the community composition between the two plant species as well as regional differences, but also identified a specific ARDRA pattern that was most common among the clones regardless of plant species. Subsequent sequence analysis indicated that the pattern was that of Lysobacter spp., which is a member of the family Xanthomonadaceae, class Gamma proteobacteria. The Lysobacter clones comprised 50.6% of the clones derived from C. soldanella and 62.5% of those from E. mollis. Other minor patterns included those of Pseudomonas spp., species of Rhizobium, Chryseobacterium spp. and Pantoea spp. among C. soldanella clones, and Pseudomonas sp. and Aeromonas hydrophila among E. mollis clones. It is not yet clear what kind of roles Lysobacter plays in association with sand dune plants, but its universal presence in the rhizosphere, together with the potential of this taxon for antagonistic activity against plant pathogens, suggests that Lysobacter might form a symbiotic relationship with its host plants.  相似文献   

7.
Sun L  Qiu F  Zhang X  Dai X  Dong X  Song W 《Microbial ecology》2008,55(3):415-424
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f–1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.  相似文献   

8.
Cyanobacterial 16S ribosomal RNA gene diversity was examined in a benthic mat on Fildes Peninsula of King George Island (62o09′54.4′′S, 58o57′20.9′′W), maritime Antarctica. Environmental DNA was isolated from the mat, a clone library of PCR-amplified 16S rRNA gene fragments was prepared, and amplified ribosomal DNA restriction analysis (ARDRA) was done to assign clones to seven groups. Low cyanobacterial diversity in the mat was suggested in that 83% of the clones were represented by one ARDRA group. DNA sequences from this group had high similarity with 16S rRNA genes of Tychonema bourrellyi and T. bornetii isolates, whose geographic origins were southern Norway and Northern Ireland. Cyanobacterial morphotypes corresponding to Tychonema have not been reported in Antarctica, however, this morphotype was previously found at Ward Hunt Lake (83oN), and in western Europe (52oN). DNA sequences of three of the ARDRA groups had highest similarity with 16S rDNA sequences of the Tychonema group accounting for 9.4% of the clones. Sequences of the remaining three groups (7.6%) had highest similarity with 16S rRNA genes of uncultured cyanobacteria clones from benthic mats of Lake Fryxell and fresh meltwater on the McMurdo Ice Shelf.  相似文献   

9.
Bacterial and fungal contaminants of enset (Ensete ventricosum) cultures and microbes associated with surface-sterilized field material were identified by 16S/26S rDNA sequencing. Ten bacterial species were identified in 16 isolates from in vitro cultures and seven in 10 isolates from field clones. Three yeast species and one filamentous fungus were recorded as in vitro contaminants, whereas five yeast species were isolated from the field material. The bacterium, Pseudomonas reactans (6 isolates), and the yeast, Torulaspora delbrueckii (8 isolates), were the most frequent in vitro contaminants. Most of the bacterial species isolated from in vitro enset were Gram-positive and hitherto unrecorded as in vitro contaminants. The difficulty in controlling the in vitro contaminants is due to their apparent endogenous nature and their resistance to antimicrobial drugs.  相似文献   

10.
11.
High Diversity among Feather-Degrading Bacteria from a Dry Meadow Soil   总被引:10,自引:0,他引:10  
The aim of this study was to determine the diversity of cultivable bacteria able to degrade feathers and present in soil under temperate climate. We obtained 33 isolates from soil samples, which clustered in 13 ARDRA groups. These isolates were able to grow on solid medium with pigeon feathers as sole carbon and nitrogen source. One representative isolate of each ARDRA group was selected for identification and feather degradation tests. The phylogenetic analysis of 16S rDNA gene fragments revealed that only 4 isolates were gram positives. Two other isolates belonged to the Cytophaga–Flavobacterium group, and the remaining to Proteobacteria. High keratinolysis activity was found for strains related to Bacillus, Cytophagales, Actinomycetales, and Proteobacteria. The 13 selected strains showed variable efficiency in degrading whole feathers and 5 strains were able to degrade maximum 40% to 98% of the whole feathers. After 4 weeks incubation, five strains grown on milled feathers produced more than 0.5 U keratinase per mL. Keratinase activities across the 13 strains were positively correlated with the percentage of feather fragmentation and protein concentration.  相似文献   

12.
Hungarian sodic water bodies have a rich macro- and microcrustacean fauna due to the lack of fish populations. The crustacean population is very abundant, for this reason these wetlands provide good feeding resources for waterbirds. The density of macro- and microcrustacean populations together with feeding waterbirds was investigated in March, April, and May of 2002, on two characteristic sodic pans, “Kelemen-szék” and “Zab-szék”. The following dabbling-filtering waterfowls and pelagic forager wader species were counted: northern pintail (Anas acuta), northern shoveler (Anas clypeata), garganey (Anas querquedula), common teal (Anas crecca), avocet (Recurvirostra avosetta), spotted redshank (Tringa erythropus), greenshank (Tringa nebularia), and marsh sandpiper (Tringa stagnatilis). The dominant macrocrustacean species was the [Anostraca – Branchinectidae] natronophile Branchinecta orientalis, and its density was significantly higher in Zab-szék than in Kelemen-szék. The microcrustacean zooplankton community was also different in the pans, [Cladocera] Daphnia magna density was significantly higher in Kelemen-szék than in Zab-szék, but the density of the [Copepoda] natronophile Arctodiaptomus spinosus, was higher in Zab-szék than in Kelemen-szék. The density of the investigated waterbird species was also significantly higher in Zab-szék than in Kelemen-szék during spring. We can conclude that the macrocrustacean B. orientalis is one of the most important potential food resources for migrating pelagic foraging waders in spring on characteristic Hungarian sodic pans. However, the most abundant available food item for waterbirds are copepod microcrustacean zooplankton, which have a biomass that is larger by approximately one order of magnitude than the macrocrustacean zooplankton biomass. Considering the lack of submerged water vegetation, we suggest that planktonic microcrustaceans are an important food resource for dabbling-filtering ducks because they can utilise the small crustacean biomass more effectively than the less abundant and rapidly moving macrocrustacean B. orientalis.  相似文献   

13.
To choose a suitable restriction endonuclease for quick assessment of bacterial diversity in polar environments by ARDRA, we investigated the effect of restriction enzymes on ARDRA patterns of cultivable marine planktonic bacteria isolated from polar region. Thirty-three isolates were analyzed by ARDRA using five enzymes (HinfI, HaeIII, AluI, and the mix AfaI/MspI), respectively, resulting in different groups, each group corresponding to a particular genotype. A comparison of the ARDRA patterns was carried out, and phylogenetic position of all thirty-three bacteria was obtained by 16S rDNA sequencing. Consistent with phylogenetic analysis, ARDRA pattern comparison revealed that AluI, being sensitive and reliable enough to generate species-specific patterns, was a suitable restriction enzyme used for evaluating bacterial diversity, suggesting a combination of ARDRA with AluI and 16S rDNA sequencing can provide a simple, fast and reliable means for bacterial identification and diversity assessment in polar environments.  相似文献   

14.
杨娜  杨波 《生态学报》2011,31(5):1203-1212
为了研究褐斑病与蕙兰根部内生细菌群落结构和多样性的关联,从野生蕙兰健株和褐斑病株根部分离出内生细菌112株,采用核糖体DNA扩增片段限制性酶切分析(ARDRA),研究了健株和病株内生细菌多样性与群落结构。将内生细菌纯培养物扩增近全长的16S rDNA,并用ARDRA (Amplified Ribosomal DNA Restriction Analysis) 对所分离的菌株进行分型,根据酶切图谱的差异,将健株中的内生细菌分成8个ARDRA型,病株分成13个ARDRA型。并选取代表性菌株进行16S rDNA序列测定。结果表明,健株分离出内生细菌6个属,优势菌群为Bacillus;病株分离出11个属,优势菌群为 MitsuariaFlavobacterium。通过回接兰花植物和初步拮抗实验发现,从病株分离出的H5号菌株 (Flavobacterium resistens)使兰花产生病症,而健株中的B02 (Bacillus cereus) 和B22号菌株 (Burkholderia stabilis) 对菌株H5有拮抗作用。  相似文献   

15.
A Gram-negative, non-motile, non-spore-forming bacterial strain designated IBFC2009T was isolated from soil of a bamboo plantation. The strain could grow at 11°C∼39°C, pH 6.0–9.0, and in the presence of 0∼5% NaCl. Based on 16S rRNA gene sequence analysis, Strain IBFC2009T belonged to the genus Sphingobacterium and showed the highest sequence similarity of 94.6% (S. composti T5-12T) with the type strains within the genus. The major fatty acids were summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c, 34.4%), iso-C15:0 (22.4%), C16:0 3-OH (15.2%), and iso-C17:0 3-OH (12.8%). The G+C content of the genomic DNA was 41.0 mol%. According to the phenotypic and genotypic characteristics, Strain IBFC2009T should represent a novel species of the genus Sphingobacterium, for which the name Sphingobacterium bambusae sp. nov. is proposed. The type strain is IBFC2009T (=CCTCC AB 209162T =KCTC 22814T).  相似文献   

16.
The objective of this study was to characterize the bacterial community composition in the bulk soil, rhizosphere soil and root tissue of the tomato plant (Lycopersicum esculentum Mill). 16S ribosomal DNA (rDNA) from the bacterial community was amplified using PCR, and sequence analysis of 16S rDNA clones was subsequently used for bacterial identification and phylogenetic classification. Phylogenetic analysis of clones (total of 68) from the bulk soil, rhizosphere and root tissues showed that about 50% of the bacteria belonged to the α-, β-, γ-, and δ-Proteobacteria or Cytophaga–Flavobacterium–Bacteroides (CFB) phyla, with only one high G+C clone identified. A number of diverse bacteria were identified within Proteobacteria, while 87% of the bacteria belonged to the genus Flavobacterium within the CFB phylum, which is a unique finding for tomato plants. Our results will be of interest to those wanting to identify bacteria that can promote plant growth or resistance to diseases.  相似文献   

17.
The bacterial diversity of an industrial biofilter used for waste gas abatement in an animal-rendering plant was investigated. A 16S rDNA clone library was generated and 444 clones were screened using computer-aided amplified ribosomal DNA restriction analysis (ARDRA). Of the screened clones, 60.8% showed unique ARDRA patterns and the remaining 174 clones were clustered into 65 groups. Almost full-length 16S rDNA sequences of 106 clones were determined and 90.5% of the clones were affiliated with the two phyla Proteobacteria and Bacteroidetes. Alpha-, Beta-, and Gammaproteobacteria accounted for 22.1, 17.6 and 18.6% respectively. Minor portions were affiliated with the Actinobacteria (2.0%), Firmicutes and Verrucomicrobia (both 1.0%), and the Deltaproteobacteria and Thermomicrobia (each 0.5%). Only six out of the 106 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species indicating that a substantial fraction of the clone sequences were derived from unknown taxa. It was also evaluated whether a database containing 281 computer-simulated bacterial rDNA fragment patterns generated from published reference sequences can be used for identification purposes. The data analysis demonstrated that this was possible only for a small number of clones, which were closely related to described bacterial strains. Rarefaction analysis of ARDRA clusters demonstrated that the 444 clones screened are insufficient to describe the entire diversity of the clone library.  相似文献   

18.
The fast-growing Rhizobium sp. strain NGR234, isolated from Papua New Guinea, and 13 strains of Sinorhizobium fredii, isolated from China and Vietnam, were fingerprinted by means of RAPD, REP, ERIC and ARDRA. ERIC, REP and RAPD markers revealed a considerable genetic diversity among fast-growing rhizobia. Chinese isolates showed higher levels of diversity than those strains isolated from Vietnam. ARDRA analysis revealed three different genotypes among fast-growing rhizobia that nodulate soybean, even though all belonged to a subcluster that included Sinorhizobium saheli and Sinorhizobium meliloti. Among S. fredii rhizobia, two strains, SMH13 and HH303, might be representatives of other species of nitrogen-fixing organisms. Although restriction analysis of the nifDnifK intergenic DNA fragment confirmed the unique nature of Rhizobium sp. strain NGR234, several similarities between Rhizobium sp. strain NGR234 and S. fredii USDA257, the ARDRA analysis and the full sequence of the 16S rDNA confirmed that NGR234 is a S. fredii strain. In addition, ARDRA analysis and the full sequence of the 16S rDNA suggested that two strains of rhizobia might be representatives of other species of rhizobia.  相似文献   

19.
In this study, Pseudomonas species were isolated from the rhizospheres of two plant hosts: rice (Oryza sativa cultivar Pathum Thani 1) and maize (Zea mays cultivar DK888). The genotypic diversity of isolates was determined on basis of amplified rDNA restriction analysis (ARDRA). This analysis showed that both plant varieties selected for two distinct populations of Pseudomonas. The actual biocontrol and plant promotion abilities of these strains was confirmed by bioassays on fungal (Verticillum sp., Rhizoctonia solani and Fusarium sp.) and bacterial (Ralstonia solanacearum and Bacillus subtilis) plant pathogens, as well as indole-3-acetic acid (IAA) production and carbon source utilization. There was a significant difference between isolates from rice and maize rhizosphere in terms of biological control against R.  solanacearum and B.  subtilis. Interestingly, none of the pseudomonads isolated from maize rhizosphere showed antagonistic activity against R.  solanacearum. This study indicated that the percentage of pseudomonad isolates obtained from rice rhizosphere which showed the ability to produce fluorescent pigments was almost threefold higher than pseudomonad isolates obtained from maize rhizosphere. Furthermore, the biocontrol assay results indicated that pseudomonad isolated from rice showed a higher ability to control bacterial and fungal root pathogens than pseudomonad isolates obtained from maize. This work clearly identified a number of isolates with potential for use as plant growth-promoting and biocontrol agents on rice and maize.  相似文献   

20.
Eighty-eight root-nodule isolates from Lespedeza spp. grown in temperate and subtropical regions of China were characterized by a polyphasic approach. Nine clusters were defined in numerical taxonomy and SDS-PAGE analysis of whole cell proteins. Based upon further characterizations of amplified 16S rDNA restriction analysis (ARDRA), PCR-based restriction fragment length polymorphism of ribosomal IGS, 16S rDNA sequence analysis and DNA-DNA hybridization, these isolates were identified as Bradyrhizobium japonicum, B. elkanii, B. yuanmingense, Mesorhizobium amorphae, M. huakuii, Sinorhizobium meliloti and three genomic species related to B. yuanmingense, Rhizobium gallicum and R. tropici. The Bradyrhizobium species and R. tropici-related rhizobia were mainly isolated from the subtropical region and the species of Mesorhizobium, S. meliloti and R. gallicum-related species were all isolated from the temperate region. Phylogenetic analyses of nifH and nodC indicated that the symbiotic genes of distinct rhizobial species associated with Lespedeza spp. might have different origins and there was no evidence for lateral gene transfer of symbiotic genes. The results obtained in the present study and in a previous report demonstrated that Lespedeza spp. are nodulated by rhizobia with diverse genomic backgrounds and these Lespedeza-nodulating rhizobia were not specific to the host species, but specific to their geographic origins. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. GenBank sequence accession numbers: The GenBank accession numbers were EF61095 through EF061114 and EF051240 for acquired 16S rDNA sequences; EF153395 through EF153402 for nifH sequences; and EF153403 through EF153410 for nodC sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号