首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generated a sequence-ready BAC/PAC contig spanning approximately 5.5 Mb on porcine chromosome 6q1.2, which represents a very gene-rich genome region. STS content mapping was used as the main strategy for the assembly of the contig and a total of 6 microsatellite markers, 53 gene-related STS and 116 STS corresponding to BAC and PAC end sequences were analyzed. The contig comprises 316 BAC and PAC clones covering the region between the genes GPI and LIPE. The correct contig assembly was verified by RH-mapping of STS markers and comparative mapping of BAC/PAC end sequences using BLAST searches. The use of microsatellite primer pairs allowed the integration of the physical maps with the genetic map of this region. Comparative mapping of the porcine BAC/PAC contig with respect to the gene-rich region on the human chromosome 19q13.1 map revealed a completely conserved gene order of this segment, however, physical distances differ somewhat between HSA19q13.1 and SSC6q1.2. Three major differences in DNA content between human and pig are found in two large intergenic regions and in one region of a clustered gene family, respectively. While there is a complete conservation of gene order between pig and human, the comparative analysis with respect to the rodent species mouse and rat shows one breakpoint where a genome segment is inverted.  相似文献   

2.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2-10/10,000 individuals. Chromosome 15q11-q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the gamma-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11-q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11-q13.  相似文献   

3.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant recurrent neuropathy mapped to a 4-cM interval on chromosome 17q25 between the short tandem repeat (STR) markers D17S1603 and D17S802. Chromosome 17q25 in general and the 4-cM HNA region in particular are also implicated in the pathogenesis of a number of tumors (tylosis with esophageal cancer, sporadic breast and ovarian tumors) and harbor a psoriasis susceptibility locus. Initial attempts to construct a yeast artificial chromosome contig failed. Therefore, we have now constructed a complete P1 artificial chromosome (PAC) and bacterial artificial chromosome (BAC) contig of the region flanked by the STR markers D17S1603 and D17S802. The contig contains 22 PAC and 64 BAC clones and covers a physical distance of approximately 1. 5 Mb. A total of 83 sequence-tagged site (STS) markers (10 known STSs and STRs, 56 STSs generated from clone end-fragments, 12 expressed sequence tags, and 5 known genes) were mapped on the contig, resulting in an extremely dense physical map with approximately 1 STS per 20 kb. This sequence-ready PAC and BAC contig will be pivotal for the positional cloning of the HNA gene as well as other disease genes mapping to this region.  相似文献   

4.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2–10/10,000 individuals. Chromosome 15q11–q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the γ-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11–q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11–q13.  相似文献   

5.
Loss of heterozygosity for a locus on human chromosome 11q22-23 is observed at high frequency in non-small cell lung carcinoma (NSCLC). Introduction of a 1.1 Mb fragmented yeast artificial chromosome (YAC) mapping to this region completely suppresses the tumorigenic properties of a human NSCLC cell line, A549. Smaller fragmented YACs give partial but not complete suppression. To further localize the gene(s) responsible for this partial suppression, a bacterial artificial chromosome (BAC) and P1-based artificial chromosome (PAC) contig was constructed, completely spanning the candidate region. End sequence generated in the construction of the BAC/PAC contig identified a previously unmapped EST and served to order genomic sequence contigs from the publicly available Celera Genomics (CG) and Human Genome Project (HGP) efforts. Comparison showed that CG provided larger contigs, while HGP provided more coverage. Neither CG nor HGP provided complete sequence coverage, alone or in combination. The sequence was used to map 110 ESTs and to predict new genes, including two GenScan gene predictions that overlapped ESTs and were shown to be differentially expressed in tumorigenic and suppressed A549 cell lines.  相似文献   

6.
We previously assigned the disease locus for autosomal dominant hereditary motor neuropathy type II (distal HMN II) within a 13-cM interval at chromosome 12q24.3. We constructed a physical map of the distal HMN II region based on yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) using an STS content mapping approach. The contig contains 26 YAC, 15 PAC, and 60 BAC clones and covers a physical distance of approximately 5 Mb. A total of 99 STS markers, including 25 known STSs and STRs, 49 new STSs generated from clone end-fragments, 20 ESTs, and 5 known genes, were located on the contig. This physical map provides a valuable resource for mapping genes and markers located within the distal HMN II region and facilitates the positional cloning of the distal HMN II gene.  相似文献   

7.
Despite the presence of several human disease genes on chromosome11q13, few of them have been molecularly cloned. Here, we reportthe construction of a contig map encompassing 11q13.1–q13.3using bacteriophage P1 (P1), bacterial artificial chromosome(BAC), and P1-derived artificial chromosome (PAC). The contigmap comprises 32 P1 clones, 27 BAC clones, 6 PAC clones, and1 YAC clone and spans a 3-Mb region from D11S480 to D11S913.The map encompasses all the candidate loci of Bardet-Biedlesyndrome type I (BBS1) and spinocerebellar ataxia type 5 (SCA5),one-third of the distal region for hereditary paraganglioma2 (PGL2), and one-third of the central region for insulin-dependentdiabetes mellitus 4 (IDDM4). In the process of map construction,61 new sequence-tagged site (STS) markers were developed fromthe Not I linking clones and the termini of clone inserts. Wehave also mapped 30 ESTs on this map. This contig map will facilitatethe isolation of polymorphic markers for a more re.ned analysisof the disease gene region and identi.cation of candidate genesby direct cDNA selection, as well as prediction of gene functionfrom sequence information of these bacterial clones.  相似文献   

8.

Background

The generation of BAC/PAC contigs in targeted genome regions is a powerful method to establish high-resolution physical maps. In domestic animal species the generation of such contigs is typically initiated with the screening of libraries with probes derived from human genes that are expected to be located in the region of interest by comparative mapping. However, in many instances the available gene-derived probes are too far apart to allow the cloning of BAC/PAC contigs larger than a few hundred kb. High resolution physical mapping allows to estimate the sizes of gaps and to control the orientation of the individual sub-contigs, which helps to avoid errors during the assembly of smaller contigs into final Mb-sized contigs. The recently constructed porcine IMNpRH2 panel allowed us to use this approach for the construction of high-resolution physical maps of SSC 6q1.2.

Results

Two sequence-ready BAC/PAC contigs of the gene-rich region on porcine chromosome 6q1.2 (SSC 6q1.2) containing the RYRl gene were constructed. The two contigs spanned about 1.2 Mb and 2.0 Mb respectively. The construction of these contigs was monitored by the results provided by the mapping of 15 markers on the IMpRH7000rad and 35 markers on the IMNpRH212000rad radiation hybrid panels. Analyses on the IMpRH panel allowed us to globally link and orientate preliminary smaller contigs, whereas analyses on the high resolution IMNpRH2 panel allowed us to finally identify the order of genes and markers.

Conclusions

A framework map of 523 cR12000 was established covering the whole studied region. The order of markers on the framework 1000:1 RH map was found totally consistent with the data deduced from the contig map. The kb/cR ratio was very constant in the whole region, with an average value of 6.6 kb/cR. We estimate that the size of the remaining gap between the two contigs is of about 300 kb. The integrated physical and RH map of the investigated region on SSC 6q1.2 was used for a comparative analysis with respect to the syntenic regions on HSA 19q13.1 and MMU 7 and revealed a perfectly conserved gene order across the entire studied interval.
  相似文献   

9.
10.
11.
Genetic studies have previously assigned a quantitative trait locus (QTL) for hemoglobin F and F cells to a region of approximately 4 Mb between the markers D6S408 and D6S292 on chromosome 6q23. An initial yeast artificial chromosome contig of 13 clones spanning this region was generated. Further linkage analysis of an extended kindred refined the candidate interval to 1-2 cM, and key recombination events now place the QTL within a region of <800 kb. We describe a high-resolution bacterial clone contig spanning 3 Mb covering this critical region. The map consists of 223 bacterial artificial chromosome (BAC) and 100 P1 artificial chromosome (PAC) clones ordered by sequence-tagged site (STS) content and restriction fragment fingerprinting with a minimum tiling path of 22 BACs and 1 PAC. A total of 194 STSs map to this interval of 3 Mb, giving an average marker resolution of approximately one per 15 kb. About half of the markers were novel and were isolated in the present study, including three CA repeats and 13 single nucleotide polymorphisms. Altogether 24 expressed sequence tags, 6 of which are unique genes, have been mapped to the contig.  相似文献   

12.
Human chromosome 11q23.2 has been proposed to contain a tumor suppressor gene(s) whose deletion has been associated with cancer of the lung and breast and with neuroblastoma. To analyze the genomic structure and to isolate a candidate tumor suppressor gene from this region, we constructed a 2-Mb sequence-ready contig map using bacteriophage P1 (P1), bacterial artificial chromosome (BAC), and P1-derived artificial chromosome (PAC). The map comprises a contig of 24 overlapping P1, BAC, and PAC clones. To isolate gene fragments from the region, we performed direct cDNA library screening, exon trapping, EST mapping, and genomic sequencing using the P1, BAC, and PAC clones. Sequence analysis of 5 clones, which spans 23% (458,738 bp) of the region, and extensive gene scanning along the entire region revealed that the region is extraordinarily scarce in genes, but we identified one ubiquitously expressed novel gene and one testis-specific gene fragment. The novel gene, which we call IGSF4 (immunoglobulin superfamily 4), is transcribed into a 1.6- or 4.4-kb RNA encoding a 442-amino-acid protein. It shares strong homology with mouse IGSF-B12 and cell adhesion molecules NCAM1 and NCAM2 within their Ig-like C2-type domains. The IGSF4 gene, a novel gene that is shown to be located in the common loss of heterozygosity region, possesses a number of interesting features and may be good candidate for a tumor suppressor gene.  相似文献   

13.
The gene for autosomal recessive retinitis pigmentosa (RP12) with preserved para-arteriolar retinal pigment epithelium was previously mapped close to the F13B gene in region 1q31-->q32.1. A 4-Mb yeast artificial chromosome contig spanning this interval was constructed to facilitate cloning of the RP12 gene. The contig comprises 25 sequence-tagged sites, polymorphic markers, and single-copy probes, including five newly obtained probes. The contig orders the F13B and HF1 genes, as well as five expressed sequence tags, with respect to the integrated genetic map of this region. Homozygosity mapping resulted in refinement of the candidate gene locus for RP12 to a 1. 3-cM region. Currently, approximately 1 Mb of the contig is represented in P1-derived artificial chromosome (PAC) clones. Direct screening of a cDNA library derived from neural retina with PACs resulted in identification of the human elongation factor 1alpha pseudogene (EEF1AL11) and a human ribosomal protein L30 pseudogene (RPL30). A physical and genetic map covering the entire RP12 candidate gene region was constructed.  相似文献   

14.
The citrus tristeza virus resistance gene (Ctv) is a single dominant gene in Poncirus trifoliata, a sexually compatible relative of citrus. To clone this gene, a bacterial artificial chromosome (BAC) library has been constructed from an individual plant that was homozygous for Ctv. This library contains 45,696 clones with an average insert size of 80 kb, corresponding to 9.6 genome equivalents. Screening of the BAC library with five chloroplast DNA probes indicated that 0.58% of the BAC clones contained chloroplast-derived inserts. The chromosome walk across the Ctv locus was initiated using three closely linked genetic markers: C19, AD8, and Z16. The walk has been completed and a contig of ca. 1.2 Mb was constructed. Based on new data, the genetic map in the Ctv region was revised, with Ctv being located between AD8-Z16 and C19 at distances of 1.2 and 0.6 cM, respectively. Utilizing DNA fragments isolated from the contig as RFLP markers, the Ctv locus was further mapped to a region of ca. 300 kb. This contig contains several putative disease-resistance genes similar to the rice Xa21 gene, the tomato Cf-2 gene, and the Arabidopsis thaliana RPS2 gene. This library will therefore allow cloning of Ctv and other putative disease-resistance genes.  相似文献   

15.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is a neurodegenerative disease frequent in northeastern Québec. In a previous study, we localized the disease gene to chromosome region 13q11 by identifying excess sharing of a marker allele in patients followed by linkage analysis and haplotyping. To create a detailed physical map of this region, we screened CEPH mega-YACs with 41 chromosome 13 sequence-tagged-sites (STSs) known to map to 13q11-q12. The YAC contig, composed of 27 clones, extends on the genetic map from D13S175 to D13S221, an estimated distance of at least 19.3 cM. A high-resolution BAC and PAC map that includes the ARSACS critical region flanked by D13S1275 and D13S292 was constructed. These YAC and BAC/PAC maps allowed the accurate placement of 29 genes and ESTs previously mapped to the proximal region of chromosome 13q. We confirmed the position of two candidate genes within the critical region and mapped the other 27 genes and ESTs to nearby intervals. Six BAC/PAC clones form a contig between D13S232 and D13S787 for sequencing within the ARSACS critical region.  相似文献   

16.
The recent cloning of cDNA encoding the Ca++ release channel (ryanodine receptor) of human sarcoplasmic reticulum has enabled us to use somatic cell hybrids to localize the ryanodine receptor gene (RYR) to the proximal long arm of human chromosome 19. Studies with additional hybrids containing deletions or translocations in chromosome 19 enabled us to localize RYR to 19q13.1 in a region distal to GPI/MAG and proximal to D19S18/DNF11. On the basis that the myotonic dystrophy (DM) locus maps near this region and that myotonia could result from a defect in the ryanodine receptor, we examined the linkage between the DM locus and RYR. Our results, showing several DM-RYR recombinants, rule out an RYR defect as the cause of DM. However, localization of RYR to a region of human chromosome 19 which is syntenic to an area of pig chromosome 6 containing the HAL gene responsible for porcine malignant hyperthermia supports the candidacy of RYR for this disorder.  相似文献   

17.
To improve the comparative map for pig chromosome 2 and increase the gene density on this chromosome, a porcine bacterial artificial chromosome (BAC) library was screened with 17 microsatellite markers and 18 genes previously assigned to pig chromosome 2. Fifty-one BAC clones located in the region of a maternally imprinted quantitative trait locus for backfat thickness (BFT) were identified. From these BACs 372 kb were sample sequenced. The average read length of a subclone was 442 basepair (bp). Contig assembly analysis showed that every bp was sequenced 1.28 times. Subsequently, sequences were compared with sequences in the nucleotide databases to identify homology with other mammalian sequences. Sequence identity was observed with sequences derived from 35 BACs. The average percentage identity with human sequences was 87.6%, with an average length of 143 bp. In total, sample sequencing of all BACs resulted in sequence identity with 29 human genes, 13 human expressed sequence tags (ESTs), 17 human genomic clones, one rat gene, one porcine gene and nine porcine ESTs. Eighteen genes located on human chromosome 11 and 19, and seven genes from other human locations, one rat gene and one porcine gene were assigned to pig chromosome 2 for the first time. The new genes were added to the radiation hybrid map at the same position as the locus from which the BAC that was sequenced was derived. In total 57 genes were placed on the radiation hybrid map of SSC2p-q13.  相似文献   

18.
We have constructed a 1.5-Mb contig spanning the distal half of the critical region for cat eye syndrome on human chromosome 22 from D22S543 to D22S181. The contig consists of 20 P1 artificial chromosome (PAC) clones and 11 bacterial artificial chromosome (BAC) clones screened from 2 BAC and 2 PAC libraries. Continuous overlap between the clones was confirmed using vectorette PCR and riboprobes. Despite the instability of this region in a previous YAC contig, only 1 BAC showed a minor instability and then in only one isolation. This contig is now providing the basis for genomic sequencing and gene identification in the cat eye syndrome critical region.  相似文献   

19.
To clarify the structure of the porcine genomic region that contains quantitative trait loci (QTL) related to fat, we constructed a bacterial artificial chromosome (BAC) contig of the region from DST to SRPK1 on porcine chromosome 7 and performed low-redundancy 'skim' shotgun sequencing of the clones that composed a minimum tiling path of the contig. This analysis revealed that the gene order from VPS52 to SRPK1 is conserved between human and swine and that comparison with the human sequence identified a rearrangement in the swine genome at the proximal end of VPS52. Analysis of the nucleotide sequences of three BAC clones that included the rearrangement point demonstrated that COL21A1 and DST, which were not present in the corresponding human region, were located adjacent to the rearrangement point. These results provide useful information about the genomic region containing QTL for fat in pigs and help to clarify the structure of the so-called 'extended-class II' region distal to the porcine major histocompatibility complex class II region.  相似文献   

20.
The genetic and cytogenetic map around the chromosome 1 region shown to be linked with polledness and intersexuality (PIS) in the domestic goat (Capra hircus) was refined. For this purpose, a goat BAC library was systematically screened with primers from human coding sequences, scraped chromosome 1 DNA, bovine microsatellites from the region, and BAC ends. All the BACs (n = 30) were mapped by fluorescence in situ hybridization (FISH) on goat chromosome 1q41-q45. The genetic mapping of 30 new goat polymorphic markers, isolated from these BACs, made it possible to reduce the PIS interval to a region of less than 1 cM on goat chromosome 1q43. The PIS locus is now located between the two genes ATP1B and COP, which both map to 3q23 in humans. Genetic, cytogenetic, and comparative data suggest that the PIS region is now probably circumscribed to an approximately 1-Mb DNA segment for which construction of a BAC contig is in progress. In addition, a human YAC contig encompassing the blepharophimosis-ptosis-epicanthus-inversus region was mapped by FISH to goat chromosome 1q43. This human disease, mapped to HSA 3q23 and affecting the development and maintenance of ovarian function, could be a potential candidate for goat PIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号