共查询到10条相似文献,搜索用时 104 毫秒
1.
2.
Luo CX Zhu XJ Zhou QG Wang B Wang W Cai HH Sun YJ Hu M Jiang J Hua Y Han X Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation. 相似文献
3.
4.
Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts. 总被引:1,自引:0,他引:1
Pericle Di Napoli Sergio Chierchia Alfonso Antonio Taccardi Alfredo Grilli Mario Felaco Raffaele De Caterina Antonio Barsotti 《Nitric oxide》2007,16(2):228-236
OBJECTIVE: Previous investigations have consistently shown that the piperazine derivative trimetazidine (TMZ, 1-[2,3,4-trimethoxybenzil] piperazine, dihydrocloride) has cardioprotective effects in the experimental ischemia-reperfusion model. We tested the hypothesis that cardioprotective effect of TMZ is partly mediated by preservation of the endothelial barrier of the coronary microcirculation. METHODS: Isolated Wistar rat (250-300 g) hearts were subjected to a 15 min period of global ischemia and 180 min reperfusion in the presence or absence of 1 microM TMZ. Hemodynamic parameters, heart weight, creatinekinase (CK) release and microvascular permeability (FITC-albumin extravasation) were evaluated. In addition, eNOS gene expression was estimated by rt-PCR, and eNOS protein levels were assessed by Western analysis. In order to confirm the involvement of NO in mediating the cardioprotective effects of TMZ, 30 microM N(omega)-nitro-l-arginine methylester (L-NAME), a specific inhibitor of nitric oxide synthase, was used. RESULTS: After ischemia and reperfusion, TMZ produced a significant improvement of mechanical function associated with a reduction of CK release and FITC-albumin diffusion (P<0.001); the agent also resulted in improvement in coronary flow (at 45 min+27% vs control). The eNOS mRNA and protein levels were significantly higher in TMZ-treated hearts compared to controls. The addition of L-NAME significantly reduced the beneficial effects of TMZ on contractile function, CK release and FITC-albumin diffusion. CONCLUSIONS: in the isolated rat heart, TMZ exerts a relevant, NO-dependent, cardioprotection against ischemia-reperfusion injury and preserves the endothelial barrier of the coronary circulation. This could contribute to explain the cardioprotective action of TMZ following ischemia and reperfusion. 相似文献
5.
Baek SH Kwon TK Lim JH Lee YJ Chang HW Lee SJ Kim JH Kwun KB 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(12):6359-6365
The effect of secretory group II phospholipase A2 (sPLA2) on the expression of the inducible NO synthase (iNOS) and the production of NO by macrophages was investigated. sPLA2 by itself barely stimulated nitrite production and iNOS expression in Raw264.7 cells. However, in combination with LPS, the effects were synergistic. This potentiation was shown for sPLA2 enzymes from sPLA2-transfected stable cells or for purified sPLA2 from human synovial fluid. The effect of PLA2 on iNOS induction appears to be specific for the secretory type of PLA2. LPS-stimulated activation of iNOS was inhibited by the well-known selective inhibitors of sPLA2 such as 12-epi-scalaradial and p-bromophenacyl bromide. In contrast, the cytosolic PLA2-specific inhibitors methyl arachidonyl fluorophosphate and arachidonyltrifluoromethyl ketone did not affect LPS-induced nitrite production and iNOS expression. Moreover, when we transfected cDNA-encoding type II sPLA2, we observed that the sPLA2-transfected cells produced two times more nitrites than the empty vector or cytosolic PLA2-transfected cells. The sPLA2-potentiated iNOS expression was associated with the activation of NF-kappa B. We found that the NF-kappa B inhibitor pyrrolidinedithiocarbamate prevented nitrite production, iNOS induction, and mRNA accumulation by sPLA2 plus LPS in Raw264.7 cells. Furthermore, EMSA analysis of the activation of the NF-kappa B involved in iNOS induction demonstrated that pyrrolidinedithiocarbamate prevented the NF-kappa B binding by sPLA2 plus LPS. Our findings indicated that sPLA2, in the presence of LPS, is a potent activator of macrophages. It stimulates iNOS expression and nitrite production by a mechanism that requires the activation of NF-kappa B. 相似文献
6.
Yoon JH Lim HJ Lee HJ Kim HD Jeon R Ryu JH 《Bioorganic & medicinal chemistry letters》2008,18(6):2179-2182
Three sesquiterpenoids, xanthatin (1), xanthinosin (2), and 4-oxo-bedfordia acid (3) were isolated from Xanthium strumarium as inhibitors of nitric oxide synthesis in activated microglia (IC(50) values: 0.47, 11.2, 136.5 microM, respectively). Compounds 1 and 2 suppressed the expression of iNOS and COX-2 and the activity of NF-kappaB through the inhibition of LPS-induced I-kappaB-alpha degradation in microglia. 相似文献
7.
Nitric oxide (NO) plays key roles in vasodilation and host defense, yet the overproduction of NO by inducible nitric oxide synthase (iNOS) at inflammatory sites can also be pathogenic. Here, we investigate the role of MPO in modulating the induction of iNOS by IFNgamma/LPS (IL). In monocyte-macrophages (Mvarphi) treated with IL, MPO gene expression was found to be downregulated as iNOS was upregulated. In Mvarphi from MPO-knockout (KO) mice, the induction of iNOS by IL was earlier and higher than in MPO-positive cells, suggesting MPO is inhibitory. Consistent with that interpretation, the addition of purified MPO enzyme to cultured macrophages inhibited iNOS induction by IL. In addition, an inhibitor of MPO enzyme, 4-aminobenzohydrazide, enhanced iNOS induction in MPO-positive cells, but not in MPO-KO cells. Similarly, taurine, a scavenger of MPO-generated HOCl, enhanced iNOS induction in MPO-positive cells, but not in MPO-KO cells. MPO affects an early event, suppressing iNOS induction when added within 2h of IL, but not when added several hours after IL. The suppression by MPO was alleviated by NO donor, sodium nitroprusside, suggesting the suppression results from scavenging of NO by MPO. This interpretation is consistent with earlier reports that MPO consumes NO, and that low levels of NO donor augment induction of iNOS by IFNgamma/LPS. The implication of these findings is that MPO acts as gatekeeper, suppressing the deleterious induction of iNOS at inflammatory sites by illegitimate signals. The combined signaling of IFNgamma/LPS overrides the gatekeeper function by suppressing MPO gene expression. 相似文献
8.
9.
10.
Mi-Kyung Kang Eun-Chung Jhee Bon-Sun Koo Jeong-Yeh Yang Byung-Hyun Park Jong-Suk Kim Hye-Won Rho Hyung-Rho Kim Jin-Woo Park 《Biochemical and biophysical research communications》2002,290(3):1090-1095
The pore-forming cytolysin of Vibrio vulnificus (VVC) causes severe hypotension and vasodilatation in vivo. Under the condition of bacterial sepsis, large amounts of nitric oxide (NO) produced by inducible NO synthase (iNOS) can contribute to host-induced tissue damage causing hypotension and septic shock. In this study, we investigated the effect of purified VVC on NO production in mouse peritoneal macrophages. VVC induced NO production in the presence of interferon-gamma. Increased NO production was not affected by polymyxin B, and heat inactivation of cytolysin abolished the NO-inducing capability. NO production was induced at the same concentration range of cytolysin for pore formation, as evidenced by the release of preloaded 2-deoxy-d-[(3)H]glucose. At the higher concentrations of cytolysin causing the depletion of cellular ATP, no NO production was observed. Increased expression of iNOS and activation of NFkappaB by VVC were confirmed by Western blotting and gel shift assay, respectively. These results suggest the role of cytolysin as an inducer of iNOS and NO production in macrophage and as a possible virulence determinant in V. vulnificus infection. 相似文献