首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
A linear mammalian artificial chromosome vector will require at least three functional elements: a centromere, two telomeres and replication origins. One route to generate such a vector is by the fragmentation of an existing chromosome. We have previously described the use of cloned telomeric DNA to generate and stably rescue truncated derivatives of a human X chromosome in a somatic cell hybrid. Further rounds of telomere-associated chromosome fragmentation have now been used to engineer a human X-derived minichromosome. This minichromosome is estimated to be < 10 Mb in size. In situ hybridization and molecular analysis reveal that the minichromosome has a linear structure, with two introduced telomere constructs flanking a 2.5 Mb alpha-satellite array. The highly truncated chromosome also retains some chromosome-specific DNA, originating from Xp11.21. There is no significant change in the mitotic stability of the minichromosome as compared with the X chromosome from which it was derived.  相似文献   

3.
Mogayzel PJ  Ashlock MA 《Genomics》2000,64(2):211-215
The DNA elements that account for the highly regulated expression of the cystic fibrosis transmembrane conductance regulator gene (CFTR) are poorly understood. The goal of this study was to assess the feasibility of using a yeast artificial chromosome (YAC)-based reporter gene construct to define these elements further. An approximately 350-kb YAC (y5'luc) was constructed by replacing CFTR with a luciferase reporter gene (luc). A second YAC (y5'lucI) was similarly constructed but included a putative positive regulatory element from CFTR intron 1. Stable Chinese hamster ovary (CHO-K1) cell clones were derived using each YAC to assess the role that luc copy number and the presence of intron 1 played in luc expression. The CHO-K1 clonal cell lines demonstrated a wide range of luciferase activity. On average, this activity was significantly higher in clones derived from y5'lucI. After correcting for luc copy number, the presence of intron 1 was still associated with an increase in luciferase activity (P < 0.05), despite the fact that luciferase activity did not correlate with luc copy number in y5'luc-derived clones (r = -0.12). In contrast, the luciferase activity correlated well with luc copy number in the clones derived from y5'luc (r = 0. 75). These data are consistent with a positive role for intron 1 in regulating CFTR expression, but suggest that copy number is not the only factor that determines expression levels, particularly when this element is present. This YAC-based reporter system will provide a unique strategy for further assessment of the cis-acting elements that control CFTR expression.  相似文献   

4.
Sequence and expression of Tangier apoA-I gene   总被引:1,自引:0,他引:1  
We have isolated and characterized the apoA-I gene from a lambda L47.1 genomic library constructed with DNA obtained from the lymphocytes of a Tangier disease patient. The DNA-derived protein sequence of Tangier apoA-I was found to be identical to normal apoA-I. Transfection of mouse C127 cells with a recombinant vector containing the Tangier apoA-I gene (pSV2-gpt apoA-I) allowed selection of stable clones resistant to aminopterin and mycophenolic acid. Analysis of these clones for apoA-I synthesis showed that the protein secreted by cells expressing the Tangier apoA-I gene was indistinguishable from the apoA-I secreted by HepG2 cells. These experiments establish that the Tangier apoA-I gene is structurally normal. It appears that the molecular basis of Tangier disease is not related to apoA-I structure or regulation of expression, but rather to other factors pertinent to apoA-I and high-density lipoprotein metabolism.  相似文献   

5.
To facilitate the use of large-insert bacterial clones for functional analysis, we have constructed new bacterial artificial chromosome vectors, pPAC4 and pBACe4. These vectors contain two genetic elements that enable stable maintenance of the clones in mammalian cells: (1) The Epstein-Barr virus replicon, oriP, is included to ensure stable episomal propagation of the large insert clones upon transfection into mammalian cells. (2) The blasticidin deaminase gene is placed in a eukaryotic expression cassette to enable selection for the desired mammalian clones by using the nucleoside antibiotic blasticidin. Sequences important to select for loxP-specific genome targeting in mammalian chromosomes are also present. In addition, we demonstrate that the attTn7 sequence present on the vectors permits specific addition of selected features to the library clones. Unique sites have also been included in the vector to enable linearization of the large-insert clones, e. g., for optical mapping studies. The pPAC4 vector has been used to generate libraries from the human, mouse, and rat genomes. We believe that clones from these libraries would serve as an important reagent in functional experiments, including the identification or validation of candidate disease genes, by transferring a particular clone containing the relevant wildtype gene into mutant cells or transgenic or knock-out animals.  相似文献   

6.
The protein product of the cystic fibrosis (CF) gene, termed the cystic fibrosis transmembrane conductance regulator (CFTR), is known to function as an apical chloride channel at the surface of airway epithelial cells. It has been proposed that CFTR has additional intracellular functions and that there is altered processing of mutant forms. In examining these functions we found a stable form of CFTR with slow turnover in surface membrane preparations from CF and non-CF immortalized airway epithelial cell lines. The methods used to study the turnover of CFTR were pulse/chase experiments utilizing saturation labeling of [35S]Met with chase periods of 5–24 h in the presence of 8 mM Met and cell fractionation techniques. Preparations of morphologically identifiable surface membranes were compared to total cell membrane preparations containing intracellular membranes. Surface membrane CFTR had lower turnover defined by pulse/chase ratios than that of the total cell membrane preparations. Moreover, mutant CFTR was stable in the surface membrane fraction with little degradation even after a 24 h chase, whereas wild-type CFTR had a higher pulse/chase ratio at 24 h. In the presence of 50 μM castanospermine, which is an inhibitor of processing α-glucosidases, a more rapid turnover of mutant CFTR was found in the total cell membrane preparation, whereas wild-type CFTR had a lower response. The results are compatible with a pool of CFTR in or near the surface membranes which has an altered turnover in CF and a glycosylation-dependent alteration in the processing of mutant CFTR. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The cystic fibrosis gene product, CFTR, and the multidrug resistance P-glycoprotein (encoded by the MDR1 gene) are structurally related proteins and both are associated with epithelial chloride channel activities. We have compared their cell-specific expression in the rat by in situ hybridization. In all tissues examined the two genes were found to have complementary patterns of expression, demonstrating exquisite regulation in both cell-specific and temporal fashions. Additionally, a switch in expression from one gene to the other was observed in certain tissues. For example, expression in the intestine switches from CFTR to MDR1 as the cells migrate across the crypt-villus boundary. A switch from CFTR to MDR1 expression was also observed in the uterine epithelium upon pregnancy. These data suggest that CFTR and P-glycoprotein serve analogous roles in epithelial cells and provide additional evidence that P-glycoprotein has a physiological role in regulating epithelial cell volume. The patterns of expression suggest that the regulation of these two genes is coordinately controlled.  相似文献   

8.
Because of the similarities between the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance (MDR) proteins, recent observations of decreased plasma membrane electrical potential (delta psi) in cells overexpressing either MDR protein or the CFTR, and the effects of delta psi on passive diffusion of chemotherapeutic drugs, we have analyzed chemotherapeutic drug resistance for NIH 3T3 cells overexpressing different levels of functional CFTR. Three separate clones not previously exposed to chemotherapeutic drugs exhibit resistance to doxorubicin, vincristine, and colchicine that is similar to MDR transfectants not previously exposed to chemotherapeutic drugs. Two other clones expressing lower levels of CFTR are less resistant. As shown previously these clones exhibit decreased plasma membrane delta psi similar to MDR transfectants, but four of five exhibit mildly acidified intracellular pH in contrast to MDR transfectants, which are in general alkaline. Thus the MDR protein and CFTR-mediated MDR phenotypes are distinctly different. Selection of two separate CFTR clones on either doxorubicin or vincristine substantially increases the observed MDR and leads to increased CFTR (but not measurable MDR or MRP) mRNA expression. CFTR overexpressors also exhibit a decreased rate of 3H -vinblastine uptake. These data reveal a new and previously unrecognized consequence of CFTR expression, and are consistent with the hypothesis that membrane depolarization is an important determinant of tumor cell MDR.  相似文献   

9.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a phosphorylation-activated chloride channel apically localized in epithelial cells. In cystic fibrosis patients, the gene encoding this N-linked glycoprotein is mutated. About 70% of CF patients express a mutated form of CFTR, deleted at the phenylalanine residue at position 508 (deltaF508). CFTR-deltaF508 fails to exit the endoplasmic reticulum; it remains incompletely glycosylated and is rapidly degraded. To optimize CFTR detection for membrane localization studies and biochemical studies, we tagged wild-type and deltaF508 CFTR with the VSV-G epitope at their carboxy-terminal ends. We have generated pig kidney epithelial cell clones (LLCPK1) expressing VSV-G-tagged human wild-type and deltaF508-CFTR. In CFTR-expressing cells, the transfected protein is maturated and transported to the apical membrane where it is concentrated. The cells exhibit a strong anion channel activity after stimulation by cAMP, as demonstrated by a halide sensitive fluorescent dye assay (6-methoxy-N-ethylquinominium, SPQ), and whole-cell patch-clamp approach. This activity of CFTR-VSV-G is indistinguishable from the wild-type CFTR. In contrast, in cells expressing tagged deltaF508-CFTR or in non-transfected cells, no anion channel activity could be detected after stimulation by cAMP. In deltaF508-CFTR-VSV-G-expressing cells, the mutated CFTR remained in the incompletely glycosylated form and was localized in the endoplasmic reticulum. These cell lines reproduce the cellular fate of wild-type and mutated CFTR-deltaF508. To our knowledge, they are the first differentiated epithelial cell lines stably expressing tagged CFTR and CFTR-deltaF508 in which cellular processing and functional activity of these two proteins are reproduced. Thus the addition of the VSV-G epitope does not impair the localization and function of CFTR, and these cell lines can be used to examine CFTR function in vitro.  相似文献   

10.
Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs) to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM). We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I−/Cl) ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis.  相似文献   

11.
We have used nonessential circular minichromosomes to monitor sister chromatid exchange during yeast meiosis. Genetic analysis shows that a 64-kb circular minichromosome undergoes sister chromatid exchange during 40% of meioses. This frequency is not reduced by the presence of a homologous linear minichromosome. Furthermore, sister chromatid exchange can be stimulated by the presence of a 12-kb ARG4 DNA fragment, which contains initiation sites for meiotic gene conversion. Using physical analysis, we have directly identified a product of sister chromatid exchange: a head-to-tail dimer form of a circular minichromosome. This dimer form is absent in a rad50S mutant strain, which is deficient in processing of the ends of meiosis-specific double-stranded breaks into single-stranded DNA tails. Our studies suggest that meiotic sister chromatid exchange is stimulated by the same mechanism as meiotic homolog exchange.  相似文献   

12.
The cystic fibrosis transmembrane conductance regulator gene (CFTR) is regulated in a tissue-specific and developmental fashion. Although it has been known for some time that phorbol esters decrease CFTR expression in cell lines that have high CFTR mRNA levels, the cis-acting elements that control this down-regulation remain ill-defined. The role of cis-acting elements within the CFTR minimal promoter in modulating responses to phorbol 12-myristate 13-acetate (PMA) and forskolin was assessed using luciferase reporter gene (luc)-containing plasmids transfected into Calu-3 and HT-29 cells. PMA treatment had no effect on luciferase activity in Calu-3 cells transiently transfected with plasmids containing luc driven by up to 2.3 kb of CFTR 5'-flanking DNA. PMA increased luciferase activity in transfected HT-29 cells. A more extensive region of DNA was evaluated using a yeast artificial chromosome (YAC) containing luc driven by approximately 335 of CFTR 5'-flanking DNA (y5'luc) stably introduced into HT-29 cells. Clonal cell lines containing y5'luc were created and assessed for luciferase activity at baseline and in response to forskolin and PMA. There was a wide range of baseline luciferase activities among the clones (42-1038 units/microg protein) that was not entirely due to the number of luc copies present within the cells. Treatment with both PMA and forskolin led to increased luciferase activity in six randomly selected clonal cell lines. As expected, endogenous CFTR expression increased in response to forskolin and decreased in response to PMA. These studies demonstrate that luc-containing YAC vectors can be used to study CFTR expression in human cells. In addition, these data suggest that important regulatory elements responsible for decreased CFTR expression in response to PMA are not located upstream of CFTR in the approximately 335 kb 5'-flanking sequence included in this YAC construct.  相似文献   

13.
The nuclear positioning of mammalian genes often correlates with their functional state. For instance, the human cystic fibrosis transmembrane conductance regulator (CFTR) gene associates with the nuclear periphery in its inactive state, but occupies interior positions when active. It is not understood how nuclear gene positioning is determined. Here, we investigated trichostatin A (TSA)-induced repositioning of CFTR in order to address molecular mechanisms controlling gene positioning. Treatment with the histone deacetylase (HDAC) inhibitor TSA induced increased histone acetylation and CFTR repositioning towards the interior within 20 min. When CFTR localized in the nuclear interior (either after TSA treatment or when the gene was active) consistent histone H3 hyperacetylation was observed at a CTCF site close to the CFTR promoter. Knockdown experiments revealed that CTCF was essential for perinuclear CFTR positioning and both, CTCF knockdown as well as TSA treatment had similar and CFTR-specific effects on radial positioning. Furthermore, knockdown experiments revealed that also A-type lamins were required for the perinuclear positioning of CFTR. Together, the results showed that CTCF, A-type lamins and an active HDAC were essential for perinuclear positioning of CFTR and these components acted on a CTCF site adjacent to the CFTR promoter. The results are consistent with the idea that CTCF bound close to the CFTR promoter, A-type lamins and an active HDAC form a complex at the nuclear periphery, which becomes disrupted upon inhibition of the HDAC, leading to the observed release of CFTR.  相似文献   

14.
15.
16.
Primary sclerosing cholangitis (PSC) and cystic fibrosis (CF) are both slowly progressive cholestatic liver diseases characterized by fibro-obliterative inflammation of the biliary tract. We hypothesized that dysfunction of the CF gene product, cystic fibrosis transmembrane conductance regulator (CFTR), may explain why a subset of patients with inflammatory bowel disease develop PSC. We prospectively evaluated CFTR genotype and phenotype in patients with PSC ( n=19) compared with patients with inflammatory bowel disease and no liver disease ( n=18), primary biliary cirrhosis ( n=17), CF ( n=81), and healthy controls ( n=51). Genetic analysis of the CFTR gene in PSC patients compared with disease controls (primary biliary cirrhosis and inflammatory bowel disease) demonstrated a significantly increased number of mutations/variants in the PSC group (37% vs 8.6% of disease controls, P=0.02). None of the PSC patients carried two mutations/variants. Of PSC patients, 89% carried the 1540G-variant-containing genotypes (resulting in decreased functional CFTR) compared with 57% of disease controls ( P=0.03). Only one of 19 PSC patients had neither a CFTR mutation nor the 1540G variant. CFTR chloride channel function assessed by nasal potential difference testing demonstrated a reduced median isoproterenol response of 14 mV in PSC patients compared with 19 mV in disease controls ( P=0.04) and 21 mV in healthy controls ( P=0.003). These data indicate that there is an increased prevalence of CFTR abnormalities in PSC as demonstrated by molecular and functional analyses and that these abnormalities may contribute to the development of PSC in a subset of patients with inflammatory bowel disease.  相似文献   

17.
We describe a method for generation of homogeneous cell populations that each arise from clonal expansion of cells at a discrete stage of differentiation within a single lineage. We have used this to produce continuously propagatable lymphocyte clones. Each clone represents a cell at a progressive stage of thymus-dependent cellular differentiation. These cloned cells bear stable surface membrane glycoproteins characteristic of precursor cells and mature progeny; conditions allowing maximal cloning efficiencies for each cell type (10–85%) have been established. Mature lymphocyte clones continue to express specialized function and provide material for biochemical analysis of T lymphocyte functions; one fully differentiated clone from the “inducer” lymphocyte set synthesizes a molecule that activates other lymphocytes to secrete immunoglobulin. This activity is associated with a highly purified molecule having a molecular weight of 45,000 daltons and an isoelectric point of approximately 6.0. This molecule, together with clones of precursor and mature T lymphocytes, may provide a system to further study the mechanisms of gene activation during cellular differentiation.  相似文献   

18.
Expression of a mutated cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to enhance proliferation within CF airways, and cells expressing a mutated CFTR have been shown to be less susceptible to apoptosis. Because the CFTR is expressed in the epithelial cells lining the gastrointestinal tract and all CF mouse models are characterized by gastrointestinal obstruction, we hypothesized that CFTR null mice would have increased epithelial cell proliferation and reduced apoptosis within the small intestine. The rate of intestinal epithelial cell migration from crypt to villus was increased in CFTR null mice relative to mice expressing the wild-type CFTR. This difference in migration could be explained by an increase in epithelial cell proliferation but not by a difference in apoptosis within the crypts of Lieberkühn. In addition, using two independent sets of CF cell lines, we found that epithelial cell susceptibility to apoptosis was unrelated to the presence of a functional CFTR. Thus increased proliferation but not alterations in apoptosis within epithelial cells might contribute to the pathophysiology of CF.  相似文献   

19.
Background information. Cystic fibrosis results from mutations in the ABC transporter CFTR (cystic fibrosis transmembrane conductance regulator), which functions as a cAMP‐regulated anion channel. The most prevalent mutation in CFTR, the Phe508 deletion, results in the generation of a trafficking and functionally deficient channel. The cellular machineries involved in modulating CFTR trafficking and function have not been fully characterized. In the present study, we identified a role for the COPI (coatomer protein I) cellular trafficking machinery in the development of the CFTR polypeptide into a functional chloride channel. To examine the role of COPI in CFTR biosynthesis, we employed the cell line ldlF, which harbours a temperature‐sensitive mutation in ε‐COP, a COPI subunit, to inhibit COPI function and then determined whether the CFTR polypeptide produced from the transfected gene developed into a cAMP‐regulated chloride channel. Results. When COPI was inactivated in the ldlF cells by an elevated temperature pulse (39°C), the CFTR polypeptide was detected on the cell surface by immunofluorescence microscopy and cell‐surface biotinylation. Therefore, CFTR proceeded upstream in the secretory pathway in the absence of COPI function, a result demonstrated previously by others. In contrast, electrophysiological measurements indicated an absence of cAMP‐stimulated chloride efflux, suggesting that channel function was impaired. In comparison, expression of CFTR at the same elevated temperature (39°C) in an ε‐COP‐rescued cell line [ldlF(ldlF)], which has an introduced wild‐type ε‐COP gene in addition to the mutant ε‐COP gene, showed restoration of cAMP‐stimulated channel activity, confirming the requirement of COPI for channel function. Conclusions. These results therefore suggest that generation of the folded‐functional conformation of CFTR requires COPI.  相似文献   

20.
Stable expression of G protein coupled receptors in cell lines is a crucial tool for the characterization of the molecular pharmacology of receptors and the screening for new antagonists. However, in some instances, many difficulties have been encountered to obtain stable cell lines expressing functional receptors. Here, we addressed the question of vector optimization to establish cell lines expressing the human neuropeptide Y receptor 5 (NPY5-R) or histamine receptor 4 (HH4R). We have compared bicistronic vectors containing viral or cellular internal ribosome entry sites (IRES), co-expressing the receptor and the neomycine resistance gene from a single mRNA, to a bigenic vector containing two distinct promoters upstream each different genes. This study is the first one to validate the use of three cellular IRESs for long-term transgene expression. Our results demonstrate for both NPY5-R and HH4R that the bicistronic vectors with EMCV, VEGF, FGF1A or FGF2 IRES provide clones expressing functional receptors with yields between 25% and 100%. In contrast, the bigenic vector provided no functional clones, related to a low expression of NPY5R mRNA. The cell lines expressing active receptor were stable after more than 50 passages. These data indicate that IRES-based bicistronic vectors are particularly appropriate to establish cell clones expressing active G-coupled protein receptors with a high yield. In the case of NPY5, it was a new way to produce such a stable cell line. Furthermore, the characteristics-presented herein-of this receptor pharmacological property are perfectly in line with those reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号