首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
The specificity of recombinant (2-->3)-alpha-sialyltransferase (ST3Gal-III), expressed in baculovirus-infected insect cells, has been determined with various oligosaccharide acceptors and sugar-nucleotide donors using a fluorescence based assay. Recombinant ST3Gal-III tagged with a polyhistidine tail was immobilized on Ni(2+)-NTA-Agarose as an active enzyme for use in the synthesis of three sialylated oligosaccharides: (i) the divalent molecule [alpha-Neu5Ac-(2-->3)-D-Galp-(1-->4)-beta-D-GlcpNAc-O-CH(2)](2)-C-(CH(2)OBn)(2) (12); (ii) the dansylated derivative, alpha-Neu5Ac-(2-->3)-D-Galp-(1-->3)-beta-D-GlcpNAc-O-(CH(2))(6)-NH-dansyl and; (iii) the tetrasacharide alpha-Neu5Ac-(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-O-CH(3). Compound 12 was itself prepared from the divalent N-acetyllactosamine molecule built on pentaerythritol by a chemo-enzymatic route.  相似文献   

2.
Initially described by Jaeken et al. in 1980, congenital disorders of glycosylation (CDG) is a rapidly expanding group of human multisystemic disorders. To date, many CDG patients have been identified with deficiencies in the conserved oligomeric Golgi (COG) complex which is a complex involved in the vesicular intra-Golgi retrograde trafficking. Composed of eight subunits that are organized in two lobes, COG subunit deficiencies have been associated with Golgi glycosylation abnormalities. Analysis of the total serum N-glycans of COG-deficient CDG patients demonstrated an overall decrease in terminal sialylation and galactosylation. According to the mutated COG subunits, differences in late Golgi glycosylation were observed and led us to address the question of an independent role and requirement for each of the two lobes of the COG complex in the stability and localization of late terminal Golgi glycosylation enzymes. For this, we used a small-interfering RNAs strategy in HeLa cells stably expressing green fluorescent protein (GFP)-tagged β1,4-galactosyltransferase 1 (B4GALT1) and α2,6-sialyltransferase 1 (ST6GAL1), two major Golgi glycosyltransferases involved in late Golgi N-glycosylation. Using fluorescent lectins and flow cytometry analysis, we clearly demonstrated that depletion of both lobes was associated with deficiencies in terminal Golgi N-glycosylation. Lobe A depletion resulted in dramatic changes in the Golgi structure, whereas lobe B depletion severely altered the stability of B4GALT1 and ST6GAL1. Only MG132 was able to rescue their steady-state levels, suggesting that B4GALT1- and ST6GAL1-induced degradation are likely the consequence of an accumulation in the endoplasmic reticulum (ER), followed by a retrotranslocation into the cytosol and proteasomal degradation. All together, our results suggest differential effects of lobe A and lobe B for the localization/stability of B4GALT1 and ST6GAL1. Lobe B would be crucial in preventing these two Golgi glycosyltransferases from inappropriate retrograde trafficking to the ER, whereas lobe A appears to be essential for maintaining the overall Golgi structure.  相似文献   

3.
β-galactoside α2, 6-sialyltransferse gene (ST6GAL) family has two members, which encode corresponding enzymes ST6Gal I and ST6Gal II. The present atudy was to investigate whether and how ST6GAL family involved in multidrug resistance (MDR) in human leukemia cell lines and bone marrow mononuclear cells (BMMC) of leukemia patients. Real-time PCR showed a high expression level of ST6GAL1 gene in both MDR cells and BMMCs (*P<0.05). Alternation of ST6GAL1 levels had a significant impact on drug-resistant phenotype changing of K562 and K562/ADR cells both in vitro and in vivo. However, no significant changes were observed of ST6GAL2 gene. Further data revealed that manipulation of ST6GAL1 modulated the activity of phosphoinositide 3 kinase (PI3K)/Akt signaling and consequently regulated the expression of P-glycoprotein (P-gp, *P<0.05) and multidrug resistance related protein 1 (MRP1, *P<0.05), which are both known to be associated with MDR. Therefore we postulate that ST6GAL1 is responsible for the development of MDR in human leukemia cells probably through medicating the activity of PI3K/Akt signaling and the expression of P-gp and MRP1.  相似文献   

4.
It is widely reported that derivatives of sugar moieties can be used to metabolically label cell surface carbohydrates or inhibit a particular glycosylation. However, few studies address the effect of substitution of the cytidylmonophosphate (CMP) portion on sialyltransferase activities. Here we first synthesized 2'-O-methyl CMP and 5-methyl CMP and then asked if these CMP derivatives are recognized by alpha2,3-sialyltransferases (ST3Gal-III and ST3Gal-IV), alpha2,6-sialyltransferase (ST6Gal-I), and alpha2,8-sialyltransferase (ST8Sia-II, ST8Sia-III, and ST8Sia-IV). We found that ST3Gal-III and ST3Gal-IV but not ST6Gal-I was inhibited by 2'-O-methyl CMP as potently as by CMP, while ST3Gal-III, ST3Gal-IV, and ST6Gal-I were moderately inhibited by 5-methyl CMP. Previously, it was reported that polysialyltransferase ST8Sia-II but not ST8Sia-IV was inhibited by CMP N-butylneuraminic acid. We found that ST8Sia-IV as well as ST8Sia-II and ST8Sia-III are inhibited by 2'-O-methyl CMP as robustly as by CMP and moderately by 5-methyl CMP. Moreover, the addition of CMP, 2'-O-methyl CMP, and 5-methyl CMP to the culture medium resulted in the decrease of polysialic acid expression on the cell surface and NCAM of Chinese hamster ovary cells. These results suggest that 2'-O-methyl CMP and 5-methyl CMP can be used to preferentially inhibit sialyltransferases, in particular, polysialyltransferases in vitro and in vivo. Such inhibition may be useful to determine the function of a carbohydrate synthesized by a specific sialyltransferase such as polysialyltransferase.  相似文献   

5.
Osteoarthritis (OA) is a worldwide epidemic and debilitating disease. It is urgent to explore the potential molecular mechanisms of OA which has crucial roles in the treatment strategy. As a post-translational modification, sialylation mediates the progression of OA. In current study, differential expression of sialyltransferases (STs) in normal and OA cartilage tissues is detected. The ST3GAL4 expression is significantly increased and positively associated with modified Mankin's score in OA tissue. Alteration of ST3GAL4 respectively mediates the degradation of extracellular mechanisms (ECM), apoptosis and proliferation in chondrocytes. Additionally, miR-193b is identified as a direct regulatory target of ST3GAL4. Functional analysis shows that modulation of ST3GAL4 could be reversed by miR-193b. Over-expression ST3GAL4 modifies CD44 sialylation. Finally, sialylated CD44 reduces the binding capacity to lubricin and mediates the activity of the NF-кB pathway. Collectively, these researches indicate that miR-193b/ST3GAL4 axis impacts OA progression by regulating CD44 sialylation via NF-кB pathway. Our researches propose a precise molecular mechanism and provide a prospective therapeutic target in OA.  相似文献   

6.
Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.  相似文献   

7.
Seven dominant mutations showing greatly enhanced resistance to the glucose repression of galactokinase synthesis have been isolated from GAL81 mutants, which have the constitutive phenotype but are still strongly repressible by glucose for the synthesis of the Leloir enzymes. These glucose-resistant mutants were due to semidominant mutations at either of two loci, GAL82 and GAL83. Both loci are unlinked to the GAL81- gal4, gal80, or gal7 X gal10 X gal1 locus or to each other. The GAL83 locus was mapped on chromosome V at a site between arg9 and cho1. The GAL82 and GAL83 mutations produced partial resistance of galactokinase to glucose repression only when one or both of these mutations were combined with a GAL81 or a gal80 mutation. The GAL82 and GAL83 mutations are probably specific for expression of the Leloir pathway and related enzymes, because they do not affect the synthesis of alpha-D-glucosidase, invertase, or isocitrate lyase.  相似文献   

8.
Glycan chains on glycoconjugates traversing the Golgi apparatus are often terminated by sialic acid residues, which can also be 9-O-acetylated. This process involves competition between multiple Golgi enzymes. Expression levels of Golgi enzyme mRNAs do not always correlate with enzyme activity, which in turn cannot accurately predict glycan sequences found on cell surfaces. Here we examine the cell type-specific expression of terminal glycans in tissues of normal mice in comparison with animals deficient in ST6Gal-I (transfers alpha2-6-linked sialic acid to Galbeta1-4GlcNAc) or ST3Gal-I (transfers alpha2-3-linked sialic acid to Galbeta1-3GalNAc). Tissues of ST6Gal-I null mice showed minimal binding of an alpha2-6-sialic acid-specific lectin, indicating that no other enzyme generates Siaalpha2-6Galbeta1-4GlcNAc and that Siaalpha2-6GalNAc (sialyl-Tn) is rare in mice. However, exposed Galbeta1-4GlcNAc termini were only moderately increased, indicating that these can be partially capped by other enzymes. Indeed, Galalpha1-3Galbeta1-4GlcNAc and Fucalpha1-2Galbeta1-4GlcNAc termini were enhanced in some tissues. Many tissues of ST3Gal-I null animals showed increases in Galbeta1-3GalNAc termini, and some increases in poly-N-acetyllactosamines. However, overall expression of alpha2-3-linked sialic acid was selectively reduced only in a few instances, indicating that other ST3Gal enzymes can generate this linkage in most tissues. Highly selective losses of 9-O-acetylation of sialic acid residues were also observed, with ST6Gal-I deficiency causing loss on endothelium and ST3Gal-I deficiency giving a marked decrease on CD4(+) lymphocytes. These data demonstrate selective regulation of sialylation and 9-O-acetylation, point to cell types with potential physiological defects in null animals, and show in vivo evidence for competition between Golgi enzymes.  相似文献   

9.
Sialylation is a biosynthetic process occurring in the trans compartments of the Golgi apparatus. Corresponding evidence is based on localization and biochemical studies of alpha2, 6(N)-sialyltransferase (ST6Gal I) as previously reported. Here we describe generation and characterization of polyclonal antibodies to recombinant rat alpha2,3(N)-sialyltransferase (ST3Gal III) expressed as a soluble enzyme in Sf9 cells or as a beta-galactosidase-human-ST3Gal III fusion- protein from E.coli , respectively. These antibodies were used to localize ST3Gal III by immunofluorescence in various cell lines and rat kidney tissue sections. In transiently transfected COS cells the antibodies directed to soluble sialyltransferase or the sialyltransferase portion of the fusion-protein only recognized the recombinant antigen retained in the endoplasmic reticulum. However, an antibody fraction crossreactive with beta-galactosidase recognized natively expressed ST3Gal III which was found to be colocalized with beta1, 4-galactosyltransferase in the Golgi apparatus of several cultured cell lines. Antibodies affinity purified on the beta- galactosidase-ST3Gal III fusion-protein column derived from both antisera have then been used to localize the enzyme in perfusion-fixed rat kidney sections. We found strong staining of the Golgi apparatus of tubular epithelia and a brush-border-associated staining which colocalized with cytochemical staining of the H+ATPase. This subcellular localization was not observed for ST6Gal I which localized to the Golgi apparatus. These data show colocalization in the Golgi apparatus and different post-Golgi distributions of the two sialyltransferases.   相似文献   

10.
11.
12.

Background

Heparan sulfate (HS) 3-O-sulfation can be catalysed by seven 3-O-sulfotransferases (HS3STs) in humans, still it is the rarest modification in HS and its biological function is yet misunderstood. HS3ST2 and HS3ST3B exhibit the same activity in vitro. They are however differently expressed in macrophages depending on cell environment, which suggests that they may be involved in distinct cellular processes. Here, we hypothesized that both isozymes might also display distinct subcellular localizations.

Methods

The subcellular distribution of HS3ST2 and HS3ST3B was analysed by using overexpression systems in HeLa cells. The localization of endogenous HS3ST2 was confirmed by immunostaining in primary macrophages.

Results

We found that HS3ST3B was only localized in the Golgi apparatus and no difference between full-length enzyme and truncated construct depleted of its catalytic domain was observed. In contrast, HS3ST2 was clearly visualized at the plasma membrane. Its truncated form remained in the Golgi apparatus, meaning that the catalytic domain might support correct addressing of HS3ST2 to cell surface. Moreover, we found a partial co-localization of HS3ST2 with syndecan-2 in HeLa cells and primary macrophages. Silencing the expression of this proteoglycan altered the localization of HS3ST2, which suggests that syndecan-2 is required to address the isozyme outside of the Golgi apparatus.

Conclusions

We demonstrated that HS3ST3B is a Golgi-resident isozyme, while HS3ST2 is addressed to the plasma membrane with syndecan-2.

General significance

The membrane localization of HS3ST2 suggests that this enzyme may participate in discrete processes that occur at the cell surface.  相似文献   

13.
14.
A meiotic fine structure map of the gal4 locus was constructed, which extended over 0.44 units on the chromosome (units in percent frequency of supposed recombination). Several nonsense gal4 mutations (four UAA and two supposed UGA [gal4-62 and gal4-69]) were placed at various sites on the map. In reversion experiments with 20 independently isolated gal4 mutants, only the gal4-62 and gal4-69 alleles, which are located at the same site on the map, could revert to overcome the superrepression of gal80s-1 spontaneously with a frequency of approximately 4 x 10(-7). Secondary mutations in the revertants occurred in the region of gal4-62 or were due to unlinked suppressors. A total of 15 GAL81 mutations in 19 isolates were found to be located in the same region as gal4-62 by three-point crosses with the aid of gal4 mutants; the other four could not be analyzed. The reverted gal4 gene and GAL81 mutations were semidominant over the wild-type GAL4+ allele and fully dominant over a nonsense gal4 mutation. Four suppressors (one dominant and three recessive) effective against gal4-62 and gal4-69 were isolated. The dominant suppressor was also effective against three independent, authentic auxotrophic UGA nonsense mutations, and one of the three recessive suppressors were effective against the authentic auxotrophic UAA and UAG mutations. These results strongly support the idea that the gal4 locus is expressed constitutively and codes for a regulatory protein. The GAL81 site mapped inside the locus codes for a part of the gal4 protein but does not work as an operator.  相似文献   

15.
Nucleotide sulfate, namely 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is a universal sulfuryl donor for sulfation. Although a specific PAPS transporter is present in Golgi membrane, no study has reported the corresponding gene. We have identified a novel human gene encoding a PAPS transporter, which we have named PAPST1, and the Drosophila melanogaster ortholog, slalom (sll). The amino acid sequence of PAPST1 (432 amino acids) exhibited 48.1% identity with SLL (465 amino acids), and hydropathy analysis predicted the two to be type III transmembrane proteins. The transient expression of PAPST1 in SW480 cells showed a subcellular localization in Golgi membrane. The expression of PAPST1 and SLL in yeast Saccharomyces cerevisiae significantly increased the transport of PAPS into the Golgi membrane fraction. In human tissues, PAPST1 is highly expressed in the placenta and pancreas and present at lower levels in the colon and heart. An RNA interference fly of sll produced with a GAL4-UAS system revealed that the PAPS transporter is essential for viability. It is well known that mutations of some genes related to PAPS synthesis are responsible for human inherited disorders. Our findings provide insights into the significance of PAPS transport and post-translational sulfation.  相似文献   

16.
Seven members of the human 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene family (HGMW-approved symbols HSD3BP1-HSD3BP5) have been cloned and physically mapped. HSD3B1 and 2 express 3beta-HSD enzymes; HSD3Bpsi1-5 are unprocessed pseudogenes that are closely related to HSD3B1 and 2 but contain no corresponding open reading frames. mRNA is expressed from psi4 and psi5 in several tissues, but with altered splice sites that disrupt reading frames. A 0.5-Mb contig of 3 yeast artificial chromosome and 32 bacterial artificial chromosome genomic clones contained no additional members of the gene family. The seven genes and pseudogenes mapped within 230 kb in the order HSD3Bpsi5-psi4-psi3-HSD3B1-psi1-psi2 -HSD3B2. HSD3B1 and 2 are in direct repeat, 100 kb apart. Six HSD3B2 mutations involve substitutions that are present in several of the pseudogenes. In four cases, mutations arose in CpG sites that are conserved within the gene cluster. The tendency for CpG sites to mutate by transition provides an adequate explanation for these HSD3B2 mutations, which are unlikely to be due to recombination or conversion within the gene family.  相似文献   

17.
18.
Three key regulatory enzymes in ganglioside biosynthesis, sialyltransferase I (ST1), sialyltransferase II (ST2), and N-acetylgalactosaminyltransferase I (GalNAcT), have been expressed as fusion proteins with green, yellow, or red fluorescent protein (GFP, YFP, or RFP) in F-11A cells. F-11A cells are a substrain of murine neuroblastoma F-11 cells that contain only low endogenous ST2 and GalNAcT activity. The subcellular localization of the fusion proteins has been determined by fluorescence microscopy, and the ganglioside composition of these cells was analyzed by high-performance thin-layer chromatography (HPTLC). ST2-GFP (85 kDa) shows a distinct Golgi localization, whereas ST1-YFP (85 kDa) and GalNAcT-RFP (115 kDa) are broadly distributed in ER and Golgi. Untransfected F-11A cells contain mainly GM3, whereas stable transfection with ST2 or GalNAcT results in the predominant expression of b-series complex gangliosides (BCGs). This result indicates that the expression of ST2 enhances the activity of endogenous GalNAcT and vice versa. The specificity of this reaction has been verified by in vitro activity assays with detergent-solubilized enzymes, suggesting the formation of an enzyme complex between ST2 and GalNAcT but not with ST1. Complex formation has also been verified by co-immunoprecipitation of ST2-GFP upon transient transfection with GalNAcT-HA-RFP and by GFP-to-RFP FRET signals that are confined to the Golgi. FRET analysis also suggests that ST2-GFP binds tightly to pyrene-labeled GM3 but not to ST1. We hypothesize that an ST2-GM3 complex is associated with GalNAcT, resulting in the enhanced conversion of GM3 to GD3 and BCGs in the Golgi. Taken together, our results support the concept that ganglioside biosynthesis is tightly regulated by the formation of glycosyltransferase complexes in the ER and/or Golgi.  相似文献   

19.
Arabinogalactan proteins are proteoglycans found on the cell surface and in the cell walls of higher plants. The carbohydrate moieties of most arabinogalactan proteins are composed of β-1,3-galactan main chains and β-1,6-galactan side chains, to which other auxiliary sugars are attached. For the present study, an endo-β-1,3-galactanase, designated FvEn3GAL, was first purified and cloned from winter mushroom Flammulina velutipes. The enzyme specifically hydrolyzed β-1,3-galactan, but did not act on β-1,3-glucan, β-1,3:1,4-glucan, xyloglucan, and agarose. It released various β-1,3-galactooligosaccharides together with Gal from β-1,3-galactohexaose in the early phase of the reaction, demonstrating that it acts on β-1,3-galactan in an endo-fashion. Phylogenetic analysis revealed that FvEn3GAL is member of a novel subgroup distinct from known glycoside hydrolases such as endo-β-1,3-glucanase and endo-β-1,3:1,4-glucanase in glycoside hydrolase family 16. Point mutations replacing the putative catalytic Glu residues conserved for enzymes in this family with Asp abolished activity. These results indicate that FvEn3GAL is a highly specific glycoside hydrolase 16 endo-β-1,3-galactanase.  相似文献   

20.
A humanized monoclonal antibody raised against human ovarian cancer RMG-I cells and designated as HMOCC-1 (Suzuki, N., Aoki, D., Tamada, Y., Susumu, N., Orikawa, K., Tsukazaki, K., Sakayori, M., Suzuki, A., Fukuchi, T., Mukai, M., Kojima-Aikawa, K., Ishida, I., and Nozawa, S. (2004) Gynecol. Oncol. 95, 290-298) was characterized for its carbohydrate epitope structure. Specifically, a series of co-transfections was performed using mammalian expression vectors encoding specific glycosyltransferases and sulfotransferases. These experiments identified one sulfotransferase, GAL3ST3, and one glycosyltransferase, B3GNT7, as required for HMOCC-1 antigen formation. They also suggested that the sulfotransferase CHST1 regulates the abundance and intensity of HMOCC-1 antigen. When HEK293T cells were co-transfected with GAL3ST3 and B3GNT7 expression vectors, transfected cells weakly expressed HMOCC-1 antigen. When cells were first co-transfected with GAL3ST3 and B3GNT7 and then with CHST1, the resulting cells strongly expressed HMOCC-1 antigen. However, when cells were transfected with a mixture of GAL3ST3 and CHST1 before or after transfection with B3GNT7, the number of antigen-positive cells decreased relative to the number seen with only GAL3ST3 and B3GNT7, suggesting that CHST1 plays a regulatory role in HMOCC-1 antigen formation. Because these results predicted that HMOCC-1 antigens are SO(3) → 3Galβ1 → 4GlcNAcβ1 → 3(±SO(3) → 6)Galβ1 → 4GlcNAc, we chemically synthesized mono- and disulfated and unsulfated oligosaccharides. Immunoassays using these oligosaccharides as inhibitors showed the strongest activity by disulfated tetrasaccharide, weak but positive activity by monosulfated tetrasaccharide at the terminal galactose, and no activity by nonsulfated tetrasaccharides. These results establish the HMOCC-1 epitope, which should serve as a useful reagent to further characterize ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号