共查询到19条相似文献,搜索用时 76 毫秒
1.
2.
絮凝酵母SPSC01为酿酒酵母Saccharomyces cerevisiae和粟酒裂殖酵母Schizosaccharomyces pombe的融合菌株,用其吸附水溶液中的重金属Cr(VI),可以大大降低生物吸附的固液分离成本。为了探讨SPSC01菌体絮凝蛋白对Cr(VI) 还原吸附的影响,对SPSC01与其亲本菌株的吸附行为进行了比较。结果表明,SPSC01和其具有絮凝性状的亲本S. pombe的Cr(VI) 去除速率基本同步,远优于无絮凝性状的亲本S. cerevisiae;达到吸附平衡时,S. pombe、SPSC01和S. cerevisiae对总Cr去除率分别达68.8%、48.6%和37.5%;从而证明了絮凝有利于Cr(VI) 的还原、吸附,絮凝蛋白在Cr(VI) 的还原吸附过程中起促进作用。通过化学屏蔽方法和傅立叶变换红外光谱 (FTIR) 分析,对SPSC01菌体表面吸附Cr(VI) 的机理进行了研究,结果表明SPSC01菌体表面吸附Cr(VI) 起主要作用的基团是氨基、羧基和酰胺基。 相似文献
3.
絮凝酵母SPSC01为酿酒酵母Saccharomyces cerevisiae和粟酒裂殖酵母Schizosaccharomyces pombe的融合菌株,用其吸附水溶液中的重金属Cr(VI),可以大大降低生物吸附的固液分离成本。为了探讨SPSC01菌体絮凝蛋白对Cr(VI)还原吸附的影响,对SPSC01与其亲本菌株的吸附行为进行了比较。结果表明,SPSC01和其具有絮凝性状的亲本S.pombe的Cr(VI)去除速率基本同步,远优于无絮凝性状的亲本S.cerevisiae;达到吸附平衡时,S.pombe、SPSC01和S.cerevisiae对总Cr去除率分别达68.8%、48.6%和37.5%;从而证明了絮凝有利于Cr(VI)的还原、吸附,絮凝蛋白在Cr(VI)的还原吸附过程中起促进作用。通过化学屏蔽方法和傅立叶变换红外光谱(FTIR)分析,对SPSC01菌体表面吸附Cr(VI)的机理进行了研究,结果表明SPSC01菌体表面吸附Cr(VI)起主要作用的基团是氨基、羧基和酰胺基。 相似文献
4.
5.
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2。[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。 相似文献
6.
【目的】水溶性的Cr(Ⅵ)对环境及人类造成的危害是社会亟待解决的问题。Cr(Ⅵ)还原菌株的分离筛选、还原特性的分析和在微生物燃料电池中的应用为六价铬污染水体的微生物修复提供科学依据和新的方法。【方法】从黄河兰州段排污口采集样本,用平板法分离筛选获得具有Cr(Ⅵ)还原能力的菌株,并将Cr(Ⅵ)还原能力最强的LZU-26菌株应用到微生物燃料电池中,检测其产电能力和Cr(Ⅵ)还原特性。【结果】共分离得到21株具有Cr(Ⅵ)还原能力的菌株,其中LZU-26菌株Cr(Ⅵ)还原能力最强,属于Cellulosimicrobium cellilans。0.4 mmol/L初始Cr(Ⅵ)在LZU-26的作用下24 h铬还原率可达到95.89%,在48 h后达99.97%。将LZU-26运用在微生物燃料电池生物阴极,所获得的最大电压和最大功率密度分别为68 mV和6.8 W/cm~2。生物阴极Cr(Ⅵ)还原率(68.9%)也远高于化学阴极(14.7%)和对照组(2.7%)。【结论】利用Cr(Ⅵ)还原菌作为微生物燃料电池生物阴极处理含铬废水,将会是一种高效、节能和环境友好的方法。 相似文献
7.
铬(Cr)是一种广泛应用于钢铁、鞣革、印染等领域的重要工业原料,由此而带来的Cr(Ⅵ)污染已成为我国主要重金属污染之一。YEM001是一组能有效还原污泥和垃圾渗滤液中的Cr(Ⅵ),实现Cr(Ⅵ)污染生物修复的微生物菌群。然而菌群的扩大培养成为YEM001进一步应用的障碍。以优化菌群YEM001培养工艺条件为目标,通过单因素实验、正交实验对YEM001菌群的培养基和发酵条件进行了优化。结果显示以淀粉为碳源,YEM001能实现快速稳定的生长。优化后的YEM001菌群培养基为淀粉10 g/L,氯化铵3 g/L,硫酸镁2 g/L,酵母浸粉1 g/L。通过对搅拌转速、pH、通气等的调控,获得最佳发酵工艺条件为28 ℃、pH值 7.5、不通入空气、搅拌转速50 r/min。在该条件下,YEM001的培养液OD600值可达1.91,且在60 h内能够完全还原100 mg/L Cr(Ⅵ)。通过成本分析,优化后每100 L培养基价格降低了38.11元,较优化前成本降低51.85%。 相似文献
8.
为了提高蜡样芽孢杆菌CP-1菌株对Cr(Ⅵ)的还原效果,采用单因素和正交试验,通过摇瓶发酵培养,对影响蜡样芽孢杆菌CP-1菌株还原Cr(Ⅵ)的发酵培养基成分和培养条件进行了优化,并研究了最佳发酵条件下的蜡样芽孢杆菌CP-1对Cr(Ⅵ)的还原效果。结果表明,蜡样芽孢杆菌CP-1菌株还原Cr(Ⅵ)的最佳培养基组成为:1%甘露醇, 3%的大豆蛋白胨, 0.05%KCl, 0.1%CuSO4,在此基础上的最佳培养条件为:pH7.0、6%接种量、45℃培养3 d,在此条件下,Cr(Ⅵ)初始浓度为100mg·L-1时,对Cr(Ⅵ)的还原率达99.75%。在Cr(Ⅵ)污染的土壤中添加蜡样芽孢杆菌CP-190d后,土壤中的Cr(Ⅵ)含量降低55.15%左右。 相似文献
9.
采用平板分离法和柠檬酸铁还原实验法相结合,从城市污水处理厂活性污泥中分离获得Fe(Ⅲ)还原菌F7,经形态观察、生理生化和16S rDNA序列分析及同源性比对鉴定为恶臭假单胞菌(Pseudomonas putida).在不同柠檬酸铁浓度和不同pH条件下的实验表明,柠檬酸铁浓度为0.32g/L时,菌株生长情况较好,柠檬酸铁浓度为0.16g/L时,Fe(Ⅲ)异化还原比例较高;pH6.5时,菌株生长情况较好,Fe(Ⅲ)异化还原量较多. 相似文献
10.
11.
木霉生物吸附重金属铬机理的研究 总被引:1,自引:0,他引:1
利用木霉(Trichoderma lhd)菌体作为吸附剂,对水体中的六价铬进行生物吸附,借助傅立叶红外变换光谱和拉曼光谱对六价铬的生物吸附机理进行了探讨。实验条件优化结果表明,温度28 ℃以及酸性环境条件(pH 1)有利于Cr (VI) 的生物吸附,12小时内,Cr (VI) 的生物吸附去除效率达99 %。吸附机理实验结果分析表明,相比于对照实验,2350 cm^-1吸收峰的出现为吸附剂表面质子化的氨基如>NH2^+, NH^+, >C=NH^+―等基团吸附Cr (VI)所致。拉曼光谱中吸收峰2097 cm^-1强度显著增强进一步表明,Cr (VI)的生物吸附是吸附剂表面氨基基团在起作用。 相似文献
12.
Out of nineteen bacteria screened from the tannery waste dump site, the most effective isolate, strain DU17 was selected for Cr(VI) reduction process among the non-pathogenic once. Based on 16S rRNA gene sequence analysis, the bacterium was identified as Enterobacter sp. DU17. Its amplified Cr(VI) reductase gene showed maximum homology with flavoprotein of Enterobacter cloacae. Enterobacter sp. DU17 reduced Cr(VI) maximally at 37 °C and pH 7.0. Various co-metals, electron (e−) donors and inhibitors were tested to study their effect on Cr(VI) reduction. In presence (0.2% each) of glucose and fructose, Enterobacter sp. DU17 reduced Cr(VI) completely after 16 and 20 h, respectively. Since the concentration of total Cr was invariable after remediation as detected through AAS analysis, this experiment disclosed that responsible operation was associated with extracellular Cr(VI) reduction process rather than uptake mechanism. Multiple antibiotic resistance index of 0.08 for this bacterium was very low as compared to standard risk assessment value of 0.20. With high Cr(VI) reducing capability, non-pathogenicity and antibiotic sensitivity, Enterobacter sp. DU17 is found to be very efficient in removing Cr(VI) toxicity from the environment. 相似文献
13.
The reduction of Cr(VI) at the expense of molecular hydrogen was studied using resting cells of Desulfovibrio vulgaris ATCC 29579 in anaerobic resting cell suspensions in MOPS buffer. Bioreduction occurred only in the presence of ligands or chelating agents (CO32-, citrate, NTA, EDTA, DTPA). The stimulatory effect of these ligands on the rate of Cr(VI) reduction was correlated (r = 0.988) with the strength of the ligand/chelate complex of Cr(III). The data are examined with respect to likely solution and redox equilibria in the ionic matrix of the carrier solution, and with respect to the potential for bioremediation of Cr(VI). 相似文献
14.
Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina
Liliana B. Villegas Pablo M. Fernández María J. Amoroso Lucía I. C. de Figueroa 《Biometals》2008,21(5):591-600
Twenty-one yeast-like microorganisms were isolated from tannery effluents and from a nickel–copper mine in Argentina. They
were tested for their Cu(II), Ni(II), Cd(II) and Cr(VI) tolerance in qualitative assays on solid medium. Three isolates were
selected for their multiple tolerance to the different heavy metals and highest tolerance to Cr(VI). According to morphological
and physiological analysis and 26S rDNA D1/D2 domain sequences the isolates were characterized as: Lecythophora sp. NGV-1, Candida sp. NGV-9 and Aureobasidium pullulans VR-8. Resistance of the three strains to high Cr(VI) concentrations and their ability to remove Cr(VI) were assessed using
YNB-glucose medium supplemented with 0.5 and 1 mM Cr(VI). Chromate removal activity was estimated by measuring remaining Cr(VI)
concentration in the supernatant using the colorimetric 1,5-diphenylcarbazide method and total chromium was determined by
flame atomic absorption spectroscopy. The results indicate that the initial Cr(VI) concentration negatively influenced growth
and the specific growth rate but stimulated the metabolic activity of the three strains; resistance to Cr(VI) by these strains
was mainly due to reduction of Cr(VI) rather than chromium bioaccumulation. This study showed the potential ability of these
strains as tools for bioremediation of Cr(VI) from contaminated sites. 相似文献
15.
Klára Czakó-Vér Martin Batiè Peter Raspor Mathias Sipiczki Miklós Pesti 《FEMS microbiology letters》1999,178(1):109-115
Lysine and leucine auxotrophic, heterothallic (h+, h-) strains of Schizosaccharomyces pombe were used to obtain chromium (VI)-sensitive and -tolerant mutants by ultraviolet radiation-induced and nitrosoguanidine-induced mutagenesis. The minimal inhibitory concentrations of K2Cr2O7 on YEA media were 225 microM for the wild-type strain CW-6, 125 microM for the sensitive mutant CS-6.51 and 275 microM for the tolerant mutant CT-6.66. The mutants exhibited cross-sensitivity of various patterns to Cd2+, Cu2+, Ni2+, Zn2+ and VO3-(4). Cr(VI) was added to the actively growing cultures and the total chromium (TOCr) content of the cells was determined. The sensitive mutant exhibited a high bioaccumulation ability, with a dry biomass of 810 micrograms g-1 after 30 min, while the tolerant mutant had a significantly lower ability than the wild-type strain. In PIPES buffer, washed, lysine-starved biomasses were treated with 75 microM Cr(VI) and after 2 h, the TOCr and the organically bound chromium (OBCr) were determined. Under these conditions, the sensitive and tolerant mutants had the same TOCr content, 50% of which was OBCr. The wild-type strain exhibited a lower TOCr content than that of its mutants and only 35% of this was OBCr. The Cr(VI)-sensitivity was due to a significantly increased uptake of Cr(VI). 相似文献
16.
To study the impact of stable weak magnetic field on the Cr(VI) removal efficiency of predominated strains in ASBR system,
the choice of the optimum magnetic density and its effect should be considered chiefly. At different magnetic densities, the
growth and propagation rates of predominated strains in solid or liquid mediums and their capabilities of removing Cr(VI)
were compared. The results showed that the optimum magnetic density was 6.0 mT. To meet the state first-class standard of
effluent discharge, it took 2–5 h more in the plant wastewater treatment than in the synthetic wastewater treatment, but the
presence of magnetic field made the reaction time up to par to decrease 1 and 2–3 h, respectively, compared with that of the
control. The magnetized magnetic powder could improve the sludge sedimentation capability, turbidity of outflow water and
efficiency of bio-system. 相似文献
17.
Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells 总被引:1,自引:0,他引:1
A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch
mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI)
at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m2 (0.04 mA/cm2) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies
the possibility of simultaneous electricity production and cathodic Cr(VI) reduction. 相似文献
18.
Cr(VI) was reduced in-situ at a carbon felt cathode in an air-cathode dual-chamber microbial fuel cell (MFC). The reduction of Cr(VI) was proven to be strongly associated with the electrogenerated H2O2 at the cathode driven by iron-reducing bacteria. At pH 2.0, only 42.5% of Cr(VI) was reduced after 12 h in the nitrogen-bubbling-cathode MFC, while complete reduction of Cr(VI) was achieved in 4 h in the air-bubbling-cathode MFC in which the reduction of oxygen to H2O2 was confirmed. Conditions that affected the efficiency of the reduction of Cr(VI) were evaluated experimentally, including the cathodic electrolyte pH, the type of iron-reducing species, and the addition of redox mediators. The results showed that the efficient reduction of Cr(VI) could be achieved with an air-bubbling-cathode MFC. 相似文献
19.
Cr(III) and Cr(VI) have different binding capacity with sparfloxacin, and have different combination modes with calf thymus DNA. Selecting these two different metal ions, the influence of them on the binding constants between sparfloxacin (SPFX) and calf thymus DNA, as well as the related mechanism has been studied by using absorption and fluorescence spectroscopy. The result shows that Cr(III) has weaker binding capacity to SPFX in the SPFX-Cr(III) binary system, but influences the binding between SPFX and DNA obviously in SPFX-DNA-Cr(III) ternary system. However, although Cr(VI) has a stronger binding capacity to SPFX, it has no effect on the binding between SPFX and DNA. Referring to the different modes of Cr(III) and Cr(VI) binding to DNA, the mechanism of the influence of metal ions on the binding between SPFX and DNA has been proposed. SPFX can directly bind to DNA by chelating DNA base sites. If a metal ion at certain concentration binds mainly to DNA bases, it can decrease the binding constants between SPFX and DNA through competing with SPFX. While if a metal ion at certain concentration mainly binds to phosphate groups of DNA, it can increase the binding constants by building a bridge between SPFX and DNA. If a metal ion at certain concentrations binds neither to bases nor phosphate groups in DNA, it will have no effect on the binding constant between SPFX and DNA. Our result supports Palumbo's conclusion that the binding between SPFX and the phosphata groups is the precondition for the combination between SPFX and DNA, which is stabilized through stacking interactions between the condensed rings of SPFX and DNA bases. 相似文献