首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of human platelet aggregation produced by PGF is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF (8 μM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 μM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 μM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets.PGF produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF.We suggest that the very weak effect of PGF on cyclic AMP_ production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

2.
The thromboxane receptor antagonist EP 092 inhibits the acute pulmonary vascular response to E. coli endotoxin in the anaesthetized, closed-chest sheep. The increase in the TXB2 level in arterial blood was not suppressed by EP 092. Intravenous infusion of the thromboxane mimetic 11,9-epoxymethano PGH2, but not PGF2 alpha, raises pulmonary artery pressure and lowers arterial pO2 similar to the endotoxin. Isolated strips of lobar pulmonary veins but not lobar arteries are contracted by low concentrations of 11,9-epoxymethano PGH2 - the effects are potently inhibited by EP 092.  相似文献   

3.
The influences of epoxymethano and epoxycarbonyl analogs of PGH1 on washed rabbit platelets, isolated smooth muscles and perfused heart preparations were investigated. On washed rabbit platelets, 11,9-epoxymethano and 11,9-epoxycarbonyl PGH1 produced a platelet aggregation whereas 9,11-epoxymethano and 9,11-epoxycarbonyl PGH1 produced an inhibition of arachidonic acid-induced platelet aggregation. On iso-ated rabbit thoracic aorta strips, 9,11-epoxycarbonyl PGH1 showed strong contracting activity (5 times as active as 11,9-epoxymethano PGH2 and 31 times as active as PGH2). All the analogs of PGH1 caused contraction of guinea pig tracheal muscle and caused an increase of perfusion pressure in guinea pig heart, though 11,9-epoxymethano and epoxycarbonyl PGH1 were far more active than 9,11-epoxymethano and epoxycarbonyl PGH1. Differences in biological activities between 11,9-epoxymethano and epoxycarbonyl PGH1 indicate that the orientation of functional groups at C9 and C11 influences biological activities.  相似文献   

4.
Characterization of the normal bovine platelet aggregation response   总被引:4,自引:0,他引:4  
1. Bovine platelets are more sensitive to stimulation by platelet activating factor (PAF) than adenosine-di-phosphate (ADP) or thrombin. 2. While epinephrine, arachidonic acid and serotonin are ineffective by themselves as aggregatory stimulants of bovine platelets they enhance the aggregation response of other platelet agonists. 3. There is no correlation between thromboxane A2 production and release and the extent of platelet aggregation in bovine platelets. 4. The dependence of bovine platelet aggregation on a phospholipid pathway and calcium mobilization is indicated.  相似文献   

5.
F2-isoprostanes are a recently discovered series of prostaglandin (PG)F2-like compounds that are produced in vivo in humans by nonenzymatic free radical catalyzed peroxidation of arachidonic acid. One of the compounds that can be produced in abundance by this mechanism is 8-epi-PGF2 alpha. 8-epi-PGF2 alpha is a potent vasoconstrictor in the rat, an effect that has been shown to be mediated via interaction with vascular thromboxane (TxA2)/endoperoxide (PGH2) receptors. In an effort to further understand the biological properties of this prostanoid in relation to its ability to interact with TxA2/PGH2 receptors, we examined its effects on human and rat platelets. At concentrations of 10(-6) M and 10(-5) M, 8-epi-PGF2 alpha induced only a shape change in human platelets and at higher concentrations (10(-4) M) induced reversible but not irreversible aggregation. Both the shape change and reversible aggregation were unaffected by indomethacin but were inhibited by the TxA2/PGH2 receptor antagonist SQ29548. Conversely, 8-epi-PGF2 alpha inhibited platelet aggregation induced by the TxA2/PGH2 receptor agonists U46619 (10(-6) M) and IBOP (3.3 x 10(-7) M) with an IC50 of 1.6 x 10(-6) M and 1.8 x 10(-6) M, respectively. 8-epi-PGF2 alpha also inhibited platelet aggregation induced by arachidonic acid. Similarly, in rat platelets, 8-epi-PGF2 alpha alone induced only modest reversible aggregation but completely inhibited U46619-induced aggregation.  相似文献   

6.
The binding of the competitive thromboxane A2/prostaglandin H2 (TXA2/PGH2) antagonist (9,11-dimethylmethano-11, 12-methano-16-(3-aza-15 alpha beta-omega-tetranor-TXA2) ([125I]PTA-OH) to membranes prepared from human platelets was characterized. [125I]PTA-OH binding to membranes from human platelets was saturable, displaceable, and dependent on protein concentration. Scatchard analysis of equilibrium binding carried out at 30 degrees C revealed one class of binding sites with a Kd of 30 +/- 4 nM and a Bmax of 1.8 +/- 0.3 pmol/mg of protein (n = 5). Kinetic analysis of the binding of [125I]PTA-OH at 0 degrees C yielded a k1 of 1.35 X 10(6) M-1 min-1 and a k-1 of 0.032 min-1, Kd = k-1/k1 = 24 nM. The potencies of a series of TXA2/PGH2 antagonists as inhibitors of [125I]PTA-OH binding was correlated with their potencies as inhibitors of platelet aggregation induced by the TXA2/PGH2 mimetic, U46619 (1 microM) (r = 0.93, p less than 0.01). A series of TXA2/PGH2 mimetics also displaced [125I]PTA-OH from its binding site, and their potencies as inhibitors of [125I]PTA-OH binding were correlated with their potencies as stimulators of platelet aggregation (r = 0.91, p less than 0.05). The IC50 values for displacement of [125I]PTA-OH by PGF2 alpha, PGD2, and the stable PGI2 analog Iloprost were greater than 25 microM, suggesting that [125I]PTA-OH does not bind to other known platelet prostaglandin receptors. These data are consistent with the notion that this binding site may represent the platelet TXA2/PGH2 receptor.  相似文献   

7.
Chelerythrine chloride is an antiplatelet agent isolated from Zanthoxylum simulans. Aggregation and ATP release of washed rabbit platelets caused by ADP, arachidonic acid, PAF, collagen, ionophore A23187 and thrombin were inhibited by chelerythrine chloride. Less inhibition was observed in platelet-rich plasma. The thromboxane B2 formation of washed platelets caused by arachidonic acid, collagen, ionophore A23187 and thrombin was decreased by chelerythrine chloride. Phosphoinositides breakdown caused by collagen and PAF was completely inhibited by chelerythrine chloride, while that of thrombin was only partially suppressed. Chelerythrine chloride inhibited the intracellular calcium increase caused by arachidonic acid, PAF, collagen and thrombin in quin-2/AM-loaded platelets. The cyclic AMP level of washed platelets did not elevated by chelerythrine chloride. The antiplatelet effect of chelerythrine chloride was not dependent on the incubation time and the aggregability of platelets inhibited by chelerythrine chloride was easily recovered after sedimenting the platelets by centrifugation and then the platelet pellets were resuspended. Chelerythrine chloride did not cause any platelet lysis, since lactate dehydrogenase activity was not found in the supernatant. These data indicate that the inhibitory effect of chelerythrine chloride on rabbit platelet aggregation and release reaction is due to the inhibition on thromboxane formation and phosphoinositides breakdown.  相似文献   

8.
The microsomal fraction of dog aortas inhibited human platelet aggregation induced by arachidonic acid, ADP, or thrombin. When aortic microsomes were added to a preparation of irreversibly aggregated platelets, the aggregates dispersed after 4–6 minutes. The fact that aortic microsomes inhibit platelet aggregation induced by ADP suggests that its effect is probably on the cellular function of platelets and not in direct competition against thromboxane A2.  相似文献   

9.
The prostaglandin endoperoxide PGH2, HHT, HETE, thromboxane A2, and thromboxane B2, which are all products of arachidonic acid metabolism of human platelets, were tested for their ability to modulate platelet cyclic nucleotide levels. None of the compounds tested altered the basal level of cAMP or cGMP, and only PGH2 and thromboxane A2 inhibited PGE1-stimulated cAMP accumulation. Thromboxane A2 was found to be a more potent inhibitor of PGE1-stimulated cAMP accumulation and inducer of platelet aggregation than PGH2.  相似文献   

10.
The in vitro effect of 2-(diethylamino)-7-ethoxychromone (RC39XVIII) on human platelet aggregation induced by several agonists and on thromboxane B2 formation, granule release and intracellular cAMP elevation has been studied. The chromosome-derivative exerts a dose-dependent inhibitory effect on aggregation produced by U46619, arachidonic acid, thrombin, collagen and ADP. RC39XVIII inhibits aggregation, TxB2 formation and granule release in parallel. Moreover the drug potentiates cAMP accumulation induced by iloprost and forskolin. The drug also inhibits soluble cAMP phosphodiesterase in a dose-dependent manner. No effect on adenylate cyclase activity measured in platelet membranes was evident.  相似文献   

11.
The influence of an amide of prostaglandin E1 and ethanolamine plasmalogen platelet-activating factor analog 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phospho-(N-11alpha, 15alpha-dioxy-9-keto-13-prostenoyl)ethanolamine (PGE1-PPAF) on platelet-activating factor (PAF)-, ADP-, and thrombin-induced human platelet aggregation has been studied. It was found that PGE1-PPAF inhibits the PAF-, ADP-, and thrombin-induced platelet aggregation in platelet-rich plasma. 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphoethanolamine inhibited PAF-induced aggregation up to 50% but had no influence on platelet aggregation induced by ADP or thrombin. The ethanolamine plasmalogen analog of PAF 1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phospho-(N-palmitoyl)ethanolami ne, having a palmitoyl residue instead of PGE1, did not inhibit platelet aggregation induced by PAF, ADP, or thrombin. We propose that inhibition of human platelet aggregation by PGE1-PPAF is mediated by its action on platelet PAF-receptors and the adenylate cyclase system.  相似文献   

12.
The effects of the fibrinogen-derived tetrapeptide, Arg-Gly-Asp-Ser (RGDS), on platelet activation processes was studied. At concentrations of 100-300 microM, RGDS completely prevented platelet aggregation induced by all the common platelet agonists, 'weak' and 'strong'. In agreement with earlier views on the aggregation-dependency of weak agonist-induced thromboxane synthesis and 5-hydroxytryptamine (5HT) secretion, RGDS (100-300 microM) inhibited these events induced by ADP, adrenaline and low concentrations of thrombin and collagen but not that induced by high concentrations of thrombin and collagen. 5HT secretion induced by the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), was also not affected by RGDS, but proteolytic degradation of the translocated membrane-bound enzyme in PMA-treated platelets, due to the actions of the Ca2+-dependent protease (Ca-DP), was completely prevented such that in the presence of RGDS, sustained increases in membrane-bound PKC activity were observed. PMA alone caused only transient increases in membrane-bound PKC. This effect of RGDS was similar to the effect of E64-d, a recently described inhibitor of Ca-DP in platelets, or the effects seen with PMA in unstirred non-aggregating platelets. It is concluded that RGDS inhibits the actions of Ca-DP in platelets via inhibition of aggregation.  相似文献   

13.
In vitro, high concentrations of ethanol (EtOH) reduce platelet aggregation. Less is known about the effect of low EtOH doses on platelet function in a selected human population of long-life abstainers and low moderate-wine drinkers to avoid rebound effect of EtOH on platelet aggregation. Results of our experiments suggest that moderate-wine drinkers have higher levels of high density lipoprotein (HDL) than long-life abstainers while fibrinogen levels are unchanged. Furthermore, platelets obtained from these individuals do not differ in their response when stimulated by agonists such as AA and collagen. The effect of in vitro exposure of low doses of EtOH has been studied in PRP and in washed platelets. EtOH (0.1-10 mM) inhibits platelet aggregation induced by collagen at its ED50 while is ineffective when aggregation was triggered by U-46619 and by 1 microM adenosine diphosphate (ADP). 5-10 mM EtOH partially reduces the second wave of aggregation induced by 3 microM ADP. 0.1-10 mM EtOH dose-dependently lowers the aggregation induced by AA at its ED50 but it is less effective at ED75 of AA. The antiaggregating effect of EtOH on aggregation induced by AA is unchanged by inhibitor of nitric oxide synthase. In addition, 10 mM EtOH reduces thromboxane (Tx) formation. In washed platelets, 1-10 mM EtOH partially inhibits platelet aggregation induced by thrombin. In washed resting platelets, 10 mM EtOH does not change the resting [Ca++]i while significantly reduces the increase in [Ca++]i triggered by AA. The results of ex vivo experiments have demonstrated that wine increases the HDL. However, this observation may or may not influence the response of platelets to agonists. Results of our studies demonstrate that low doses of alcohol reduces platelet function.  相似文献   

14.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

15.
Modulation of human platelet adenylate cyclase by prostacyclin (PGX).   总被引:51,自引:0,他引:51  
Prostacyclin (PGX) (57)-9-deoxy-6,9alpha-epoxy-delta5-PGF1alpha has been found to be a potent stimulator of cAMP accumulation in platelets than PGE1. The prostacyclin stimulation of platelet cAMP accumulation can be antagonized by the prostaglandin endoperoxide PGH2, and a PGH2-induced platelet aggregation is antagonized by prostacyclin. A model of platelet homeostasis is proposed that suggests platelet aggregation is controlled by a balance between the adenylate cyclase stimulating activity of prostacyclin, and the cAMP lowering activity of PGH2.  相似文献   

16.
The inhibitory effect of adenosine on aggregation of human platelets activated by platelet activating factor (PAF), ADP and serotonin (5-HT) were examined using native platelets from blood of volunteers. Platelet aggregation was determined by Born's method. Effective adenosine concentrations (IC50) which had inhibited platelet aggregation were found to be 0.63 +/- 0.11, 1.47 +/- 0.31 and 0.64 +/- 0.18 microM, respectively. It was shown that 10 microM adenosine inhibited PAF-induced platelet aggregation completely. The same adenosine concentration blocked ADP- and 5-HT-induced aggregation only partially. Adenosine is physiological inhibitor of human platelet aggregation in administration of PAF, ADP and 5-HT. Specific characteristics of adenosine modulating effect on these ligands was elicited.  相似文献   

17.
Alpha-bulnesene is a sesquiterpenoid isolated from the water extract of Pogostemon cablin. It showed a potent and concentration-dependent inhibitory effect on platelet-activating factor (PAF) and arachidonic acid (AA) induced rabbit platelet aggregation. In a radioligand binding assay for the PAF receptor, alpha-bulnesene competitively inhibited [(3)H]PAF binding to the PAF receptor with an IC(50) value of 17.62+/-5.68microM. alpha-Bulnesene also dose-dependently inhibited PAF-induced intracellular Ca(2+) increase in fluo-3/AM-loaded platelets (IC(50) values of 19.62+/-1.32microM). Furthermore, alpha-bulnesene inhibited AA-induced thromboxane B(2) (TXB(2)) formation and prostaglandin E(2) (PGE(2)) formation. These results indicate that the inhibitory effect of alpha-bulnesene on platelet aggregation was due to a dual activity; specifically the chemical blocked PAF-induced intracellular signal transduction and interfered with cyclooxygenase activity, which resulted in a decrease in thromboxane formation. This study is the first to demonstrate that alpha-bulnesene is a PAF receptor antagonist as well as an anti-platelet aggregation agent.  相似文献   

18.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

19.
Leech saliva is shown to contain protein platelet aggregation inhibitors and a range of selective low molecular weight (LMW) aggregation inhibitors. Gel filtration on Bio-Gel P-2 (cut-off kDa) yields a protein fraction (Fr. I) and three LMW fractions. Fr. I inhibits aggregation induced by collagen, ADP, epinephrine and arachidonic acid. Of all the fractions, only one, Fr. II (LMW) specifically inhibits aggregation induced by platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine). Fr. II also inhibits thrombin-induced platelet aggregation. Fr. III inhibits aggregation induced by ADP, epinephrine and arachidonic acid, and Fr. IV only that induced by arachidonic acid. Fr. II also inhibits PAF- and thrombin-induced thromboxane generation in platelets, but does not inhibit arachidonic acid-induced thromboxane generation. Efforts to separate the anti-PAF from the anti-thrombin activity have been unsuccessful. The inhibition may therefore be due to a single inhibitor, though it may also be due to several inhibitors. Fr. II also inhibits superoxide anion production in formyl Met-Leu-Phe (fMLP)- and ionophore 23187- stimulated neutrophils. This may be due to the inhibition of the effects of PAF generated within the cell. Preliminary results suggest that the Fr. II inhibitor(s) is (are) amphipathic. The interaction of platelets with PAF and their interaction with the inhibitor(s) are mutually exclusive, and the inhibition may be competitive.  相似文献   

20.
Platelet activation by the prostaglandin endoperoxide (PGH2)/thromboxane (Tx) A2 analog, U46619, involves stimulation of phospholipase (PL) C and an increase in intracellular calcium via distinct receptor subtypes. Agents which stimulate adenylate cyclase inhibit platelet function. We demonstrate that PGH2/TxA2 receptor desensitization is associated with enhanced stimulation of platelet cyclic AMP by the prostacyclin analog, iloprost and by forskolin. Sensitization of adenylate cyclase is mediated via the PGH2/TxA2 receptor subtype which activates PLC, as it is blocked by the specific antagonist, GR32191 (Takahara, K., Murray, R., FitzGerald, G. A., and Fitzgerald, D. J. (1990) J. Biol. Chem. 265, 6838-6844). This effect is not observed in platelets desensitized with thrombin or platelet activating factor and is not mediated by protein kinase C. Prior exposure of platelets to platelet activating factor results in much greater desensitization of PGH2/TxA2-induced aggregation (mean 64%) compared with calcium stimulation (mean 18%), consistent with selective heterologous desensitization of the PLC-linked PGH2/TxA2 receptor subtype. Platelet activation by PGH2/TxA2 is a tightly regulated process, involving both homologous desensitization of at least two receptor subtypes and sensitization of the platelet adenylase cyclase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号