首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently a powerful electrophoresis method for the native preparation and characterization of the respiratory protein complexes of mitochondria from fungi and mammals has been developed, which employs Coomassie dyes to introduce charge shifts on proteins (Schägger and von Jagow (1991) Anal. Biochem. 199, 223–231). The procedure, which is called ‘blue native-polyacrylamide gel electrophoresis’ (BN-PAGE), was modified and introduced for the analysis of mitochondria from higher plants. BN-PAGE of mitochondrial protein from potato allows the separation of nine distinct protein complexes between 100 and 1000 kDa and reveals novel results for their composition, molecular mass and stoichiometry. For the first time soluble mitochondrial protein complexes, like the HSP60 complex (750 kDa) and a complex of 200 kDa, which includes a formate dehydrogenase, are analysed by BN-PAGE. Complex I from potato (1000 kDa) is about 100 kDa larger than the corresponding enzyme from beef and can be resolved into more than 30 different subunits on a second gel dimension. The F1F0 ATP synthase (580 kDa) and the cytochrome c oxidase (160 kDa) from potato seem to contain more subunits than hitherto reported. Direct sequencing of subunits revealed that the F1 part of the F1F0 ATP synthase lacks the oligomycin sensitivity conferring protein (OSCP), which was reported to be present in F1 parts of dicotyledonous plants, but contains the ATPase inhibitory protein. N-terminal sequences of 16 mitochondrial proteins were obtained, several of which are presented for the first time from a plant source. BN-PAGE allows the preparation of mitochondrial protein complexes from gram amounts of plant tissue, as the procedure only requires milligram amounts of organelles. This potential of BN-PAGE is demonstrated by the separation and characterization of the mitochondrial enzyme complexes from Arabidopsis thaliana. Further analysis of organellar protein complexes by BN-PAGE will allow the generation of ‘protein maps’ from different tissues and developmental stages or from mutant plants.  相似文献   

2.
Shao J  Zhang Y  Yu J  Guo L  Ding Y 《PloS one》2011,6(5):e20342
Thylakoid membrane complexes of rice (Oryza sativa L.) play crucial roles in growth and crop production. Understanding of protein interactions within the complex would provide new insights into photosynthesis. Here, a new "Double-Strips BN/SDS-PAGE" method was employed to separate thylakoid membrane complexes in order to increase the protein abundance on 2D-gels and to facilitate the identification of hydrophobic transmembrane proteins. A total of 58 protein spots could be observed and subunit constitution of these complexes exhibited on 2D-gels. The generality of this new approach was confirmed using thylakoid membrane from spinach (Spinacia oleracea) and pumpkin (Cucurita spp). Furthermore, the proteins separated from rice thylakoid membrane were identified by the mass spectrometry (MS). The stromal ridge proteins PsaD and PsaE were identified both in the holo- and core- PSI complexes of rice. Using molecular dynamics simulation to explore the recognition mechanism of these subunits, we showed that salt bridge interactions between residues R19 of PsaC and E168 of PasD as well as R75 of PsaC and E91 of PsaD played important roles in the stability of the complex. This stromal ridge subunits interaction was also supported by the subsequent analysis of the binding free energy, the intramolecular distances and the intramolecular energy.  相似文献   

3.
Human embryonic stem cells (hESCs) have great potential for use in developmental biology studies, functional genomics applications, drug screening, and regenerative medicine. A detailed understanding of the molecular mechanisms that are responsible for maintaining the undifferentiated and pluripotent nature of hESCs is essential for their effective therapeutic application. It has become evident that many complex cellular processes are carried out by assemblies of protein molecules (protein complexes). Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to separate protein complexes from whole cell lysates. Using BN-PAGE, we resolved cytoplasmic and membrane-associated complexes from hESCs and characterised their composition, stoichiometry, and dynamics by denaturing SDS-PAGE. The reliability of the fractionation was examined by western blot analysis of membrane and cytosolic markers. MALDI TOF/TOF mass spectrometry identified 119 cytosolic and 69 membrane proteins from the BN-PAGE proteome maps. Potential protein complexes were validated by computational prediction of possible protein-protein interactions using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Based on BN-PAGE gels and validation by databases, 82 heteromultimeric and 47 homomultimeric protein complexes have been found in hESCs. Resolving some of the protein complexes provided insight into the function of previously uncharacterised complexes in hESCs.  相似文献   

4.
5.
Advantages and limitations of clear-native PAGE   总被引:1,自引:0,他引:1  
Wittig I  Schägger H 《Proteomics》2005,5(17):4338-4346
Clear-native PAGE (CN-PAGE) separates acidic water-soluble and membrane proteins (pI < 7) in an acrylamide gradient gel, and usually has lower resolution than blue-native PAGE (BN-PAGE). The migration distance depends on the protein intrinsic charge, and on the pore size of the gradient gel. This complicates estimation of native masses and oligomerization states when compared to BN-PAGE, which uses negatively charged protein-bound Coomassie-dye to impose a charge shift on the proteins. Therefore, BN-PAGE rather than CN-PAGE is commonly used for standard analyses. However, CN-PAGE offers advantages whenever Coomassie-dye interferes with techniques required to further analyze the native complexes, e.g., determination of catalytic activities, as shown here for mitochondrial ATP synthase, or efficient microscale separation of membrane protein complexes for fluorescence resonance energy transfer (FRET) analyses. CN-PAGE is milder than BN-PAGE. Especially the combination of digitonin and CN-PAGE can retain labile supramolecular assemblies of membrane protein complexes that are dissociated under the conditions of BN-PAGE. Enzymatically active oligomeric states of mitochondrial ATP synthase previously not detected using BN-PAGE were identified by CN-PAGE.  相似文献   

6.
The insect midgut epithelium is generally lined with a unique chitin and protein structure, the peritrophic membrane (PM), which facilitates food digestion and protects the gut epithelium. We used gel electrophoresis and mass spectrometry to identify the extracted proteins from the silkworm PM to obtain an in-depth understanding of the biological function of the silkworm PM components. A total of 305 proteins, with molecular weights ranging from 8.02 kDa to 788.52 kDa and the isoelectric points ranging from 3.39 to 12.91, were successfully identified. We also found several major classes of PM proteins, i.e. PM chitin-binding protein, invertebrate intestinal mucin, and chitin deacetylase. The protein profile provides a basis for further study of the physiological events in the PM of Bombyx mori. [BMB Reports 2012; 45(11): 665-670]  相似文献   

7.
Purification of mitochondria and mitochondrial protein complexes from green tissues is often severely impaired by the presence of chloroplasts and their proteins. Here we present a method which allows analysis of respiratory protein complexes from potato leaves. The procedure includes the preparation of an organellar fraction specifically enriched in mitochondria and the separation of organellar protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). For the first time mitochondrial and chloroplast protein complexes have been resolved simultaneously in a native gel. BN-PAGE allowed the separation of eleven bands, including the mitochondrial NADH-dehydrogenase, the bc1 complex and the mitochondrial F1-ATP synthase as well as the chloroplast F1-ATP synthase, the cytochrome b6f complex, the two photosystems and the light harvesting complex. The resolution of the protein complexes in the first dimension was good enough to allow identification of all subunits of individual complexes in the second dimension under denaturing conditions. Thus, BN-PAGE offers an opportunity to analyze mitochondrial and chloroplast protein complexes from a single preparation from very small amounts of tissue. The implications of our findings, for studies on protein expression and turnover in different tissues and developmental stages, are discussed.  相似文献   

8.
9.
GTP-binding proteins were studied in synaptic vesicles prepared from bovine brain by differential centrifugation and separated further from plasma membranes using gel permeation chromatography. Following separation by SDS-PAGE of proteins from the different fractions, and transfer to nitrocellulose sheets, the presence and localization of low-molecular-mass GTP-binding proteins were assessed by [alpha-32 P]GTP binding. The vesicle-membrane fraction (SV) was enriched in synaptophysin (p38, a synaptic vesicle marker) and contained low-molecular-mass GTP-binding proteins; these consisted of a major 27 kDa protein and minor components (Mr 26 and 24 kDa) which were trypsin-sensitive and immunologically distinguishable from ras p21 protein. GTP-binding proteins of low molecular mass, but displaying less sensitivity to trypsin, were also found in the plasma membrane fraction (PM; enriched in Na+/K(+)-ATPase). In addition, the PM fraction contained GTP-binding proteins with higher Mr (Gi alpha and G0 alpha), together with another GTP-binding protein, ras p21. Putative function(s) of these GTP-binding proteins with low mass are discussed.  相似文献   

10.
In this study, a new 3D native electrophoretic protocol is proposed for an exhaustive separation and identification of membrane proteins. It is based on native liquid phase isoelectrofocusing (N-LP-IEF) of protein complexes in the first dimension, followed by blue native polyacrylamide gel electrophoresis (BN-PAGE) in the second dimension, where both the pI and the molecular masses of protein complexes (2D N-LP-IEF-BN) were used to separate them in their native form. Finally, each single component can be resolved using denaturing electrophoresis (3D N-LP-IEF-BN-SDS-PAGE). The thylakoid membrane of spinach which contains four big protein complexes was chosen as a model for setting up analytical methods suitable for any membrane proteins. The pI-based MicroRotofor has a number of advantages over BN-PAGE: it does not require the addition of any chemicals, and separation of complexes is based on the protein's real physicochemical properties which inevitably change when dye is added. Results were more easily reproduced than with BN, and the pI of each native complex was also determined. Although some fractions still contained comigrating complexes after MicroRotofor, these were subsequently separated by BN for further analysis. Thus, highly hydrophobic complexes, such as ATP-synthetas and Cyt b6/f, were separated in native form as were various complexes of LHCII trimers, which have different pI but similar molecular masses. SDS-PAGE revealed almost all the subunits from the four photosynthetic complexes, indicating that by using 3D N-LP-IEF-BN-SDS-PAGE it is possible to achieve a greater degree of component identification than with 2D BN-SDS-PAGE.  相似文献   

11.
Blue Native electrophoresis to study mitochondrial and other protein complexes   总被引:23,自引:0,他引:23  
The biogenesis and maintenance of mitochondria relies on a sizable number of proteins. Many of these proteins are organized into complexes, which are located in the mitochondrial inner membrane. Blue Native polyacrylamide gel electrophoresis (BN-PAGE) is a method for the isolation of intact protein complexes. Although it was initially used to study mitochondrial respiratory chain enzymes, it can also be applied to other protein complexes. The use of BN-PAGE has increased exponentially over the past few years and new applications have been developed. Here we review how to set up the basic system and outline modifications that can be applied to address specific research questions. Increasing the upper mass limit of complexes that can be separated by BN-PAGE can be achieved by using agarose instead of acrylamide. BN-PAGE can also be used to study assembly of mitochondrial protein complexes. Other applications include in-gel measurements of enzyme activity by histochemical staining and preparative native electrophoresis to isolate a protein complex. Finally, new ways of identifying protein spots in Blue Native gels using mass spectrometry are briefly discussed.  相似文献   

12.
Blue native PAGE   总被引:1,自引:0,他引:1  
Blue native PAGE (BN-PAGE) can be used for one-step isolation of protein complexes from biological membranes and total cell and tissue homogenates. It can also be used to determine native protein masses and oligomeric states and to identify physiological protein-protein interactions. Native complexes are recovered from gels by electroelution or diffusion and are used for 2D crystallization and electron microscopy or analyzed by in-gel activity assays or by native electroblotting and immunodetection. In this protocol, we describe methodology to perform BN-PAGE followed by (i) native extraction or native electroblotting of separated proteins, or (ii) a second dimension of tricine-SDS-PAGE or modified BN-PAGE, or (iii) a second dimension of isoelectric focusing (IEF) followed by a third dimension of tricine-SDS-PAGE for the separation of subunits of complexes. These protocols for 2D and 3D PAGE can be completed in 2 and 3 days.  相似文献   

13.
A two-dimensional electrophoretic system has been developed for the separation of chloroplast thylakoid membrane proteins. This system incorporates nondenaturing polyacrylamide gel electrophoresis in the presence of the nonionic detergent dodecyl-beta-D-maltoside in the first dimension and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the second dimension. Thylakoid membranes isolated from Spinacia oleracea were solubilized in 1.0% dodecyl-beta-D-maltoside and separated in 4-7% linear acrylamide gradient tube gels which contained 0.05% dodecyl-beta-D-maltoside. After electrophoresis, the tube gels were equilibrated with a sodium dodecyl sulfate-containing equilibration buffer and applied to a 12.5-20% acrylamide linear gradient gel. The Lammelli buffer system was used in both dimensions. The two-dimensional gels were analyzed by staining sequentially with 3,3',5,5'-tetramethylbenzidine-H2O2, Coomassie blue, and silver staining. A number of protein components were identified on "Western blots" of these two-dimensional gels by immunological localization. Membrane protein complexes such as the light-harvesting chlorophyll a/b protein complex, photosystem I, photosystem II, the cytochrome b6/f complex and ribulose bisphosphate carboxylase appear to migrate as essentially intact complexes in the first dimension and appear as vertical series of resolved subunits in the second dimension. This technique complements isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis in providing additional information concerning the subunit composition of membrane protein complexes and may prove to be of general utility for studying the protein composition of other membrane systems.  相似文献   

14.
Identification and characterization of multi-protein complexes is an important step toward an integrative view of protein-protein interaction networks that determine protein function and cell behavior. The limiting factor for identifying protein complexes is the method for their separation. Blue native PAGE (BN-PAGE) permits a high-resolution separation of multi-protein complexes under native conditions. To date, BN-PAGE has only been applicable to purified material. Here, we show that dialysis permits the analysis of multi-protein complexes of whole cellular lysates by BN-PAGE. We visualized different multi-protein complexes by immunoblotting including forms of the eukaryotic proteasome. Complex dynamics after gamma interferon stimulation of cells was studied, and an antibody shift assay was used to detect protein-protein interactions in BN-PAGE. Furthermore, we identified defined protein complexes of various proteins including the tumor suppressor p53 and c-Myc. Finally, we identified multi-protein complexes via mass spectrometry, showing that the method has a wide potential for functional proteomics.  相似文献   

15.
The use of blue native polyacrylamide gel electrophoresis (BN-PAGE) has been reported in the literature to retain both water-soluble and membrane protein complexes in their native hetero-oligomeric state and to determine the molecular weight of membrane proteins. However, membrane proteins show abnormal mobility when compared with water-soluble markers. Although one could use membrane proteins as markers or apply a conversion factor to the observed molecular weight to account for the bound Coomassie blue dye, when one just wants to assess homo-oligomeric size, these methods appear to be too time-consuming or might not be generally applicable. Here, during detergent screening studies to identify the best detergent for achieving a monodisperse sample, we observed that under certain conditions membrane proteins tend to form ladders of increasing oligomeric size. Although the ladders themselves contain no indication of which band represents the correct oligomeric size, they provide a scale that can be compared with a single band, representing the native homo-oligomeric size, obtained in other conditions of the screen. We show that this approach works for three membrane proteins: CorA (42 kDa), aquaporin Z (25 kDa), and small hydrophobic (SH) protein from respiratory syncytial virus (8 kDa). In addition, polydispersity results and identification of the most suitable detergent correlate optimally not only with size exclusion chromatography (SEC) but also with results from sedimentation velocity and equilibrium experiments. Because it involves minute quantities of sample and detergent, this method can be used in high-throughput approaches as a low-cost technique.  相似文献   

16.
Upon binding to a high-affinity plasma membrane (PM) protein (a member of the 14-3-3 family of regulatory proteins), the fungal phytotoxin fusicoccin (FC) activates the H+- ATPase by hindering the inhibitory interaction of the enzyme's C-terminus with its catalytic site. Protease protection experiments carried out with sealed PM vesicles of different orientation proved that the FC-binding site faces the cytoplasmic surface of the membrane. The in vivo induced activation of the H+-ATPase by FC was retained during solubilization of PM proteins. Two-dimensional gel systems combining a native separation of membrane protein complexes with a denaturing dimension as well as high-performance anion-exchange chromatography proved the existence of a labile ATPase:14-3-3 complex in plasma membranes. Stabilization of this complex could be achieved by FC treatment in vivo or in vitro . Mild proteolytic removal of the C-terminal auto-inhibitory domain of the H+ATPase liberated apparent hydrophobic 14-3-3 isoforms from the membrane in soluble form. During size exclusion chromatography of the proteolytically released proteins, co-elution of 14-3-3 dimers, protein-bound FC and the C-terminus of the H+ATPase was observed. Moreover, the data suggest that 14-3-3 dimers themselves are not able to bind FC. Based on these results, it is proposed that the 'FC receptor' is represented by a labile complex between a 14-3-3 dimer and the H+-ATPase whose formation is part of a mechanism regulating ATPase-activity under physiological conditions. In our working model, binding of FC stabilizes this labile complex, thus leading to a strong and persistent activation of the H+-ATPase in vivo . The possibility that the C-terminus of the enzyme represents the binding domain for 14-3-3 homologs is discussed.  相似文献   

17.
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.  相似文献   

18.
Blue native PAGE is an electrophoretic technique for high-resolution separation of membrane proteins. The method has been proven especially useful for investigation of native protein complexes enabling a characterization of potential protein-protein interactions in the context of functional proteomics. Blue native PAGE is easy to realise, results are reproducible and a high number of protocols are available. However, care should be taken during solubilization of protein complexes to achieve significant results in BN-PAGE analysis. Solubilization of membranes and proteins is not only influenced by detergent-lipid and detergent-protein interactions but also by lipid-lipid, lipid-protein and protein-protein interactions. Interactions have been investigated experimentally and theoretically. But, in practice, the experimental results do not always mirror the theoretical basis and therefore optimal solubilization conditions for each membrane and membrane protein complex should be investigated individually to tap the full potential of BN-PAGE analysis.  相似文献   

19.
Affinity-purified polyclonal antibodies, raised against two synthetic peptides corresponding to the R domain and the C terminus of the human cystic fibrosis transmembrane conductance regulator (CFTR), were used to characterize and localize the protein in human epithelial cells. Employing an immunoblotting technique that ensures efficient detection of large hydrophobic proteins, both antibodies recognized and approximately 180-kDa protein in cell lysates and isolated membranes of airway epithelial cells from normal and cystic fibrosis (CF) patients and of T84 colon carcinoma cells. Reactivity with the anti-C terminus antibody, but not with the anti-R domain antibody, was eliminated by limited carboxypeptidase Y digestion. When normal CFTR cDNA was overexpressed via a retroviral vector in CF or normal airway epithelial cells or in mouse fibroblasts, the protein produced had an apparent molecular mass of about 180 kDa. The CFTR expressed in insect (Sf9) cells by a baculovirus vector had a molecular mass of about 140 kDa, probably representing a nonglycosylated form. The CFTR in epithelial cells appears to exist in several forms. N-glycosidase treatment of T84 cell membranes reduces the apparent molecular mass of the major CFTR band from 180 kDa to 140 kDa, but a fraction of the T84 cell CFTR could not be deglycosylated, and the CFTR in airway epithelial cell membranes could not be deglycosylated either. Moreover, wheat germ agglutinin absorbs the majority of the CFTR from detergent-solubilized T84 cell membranes but not from airway cell membranes. The CFTR in all epithelial cell types was found to be an integral membrane protein not solubilized by high salt or lithium diiodosalicylate treatment. Sucrose density gradient fractionation of crude membranes prepared from the airway epithelial cells, previously surface-labeled by enzymatic galactosidation, showed a plasma membrane localization for both the normal CFTR and the CFTR carrying the Phe508 deletion (delta F 508). The CFTR in all cases co-localized with the Na+, K(+)-ATPase and the plasma membrane calcium ATPase, while the endoplasmic reticulum calcium ATPase and mitochondrial membrane markers were enriched at higher sucrose densities. Thus, the CFTR appears to be localized in the plasma membrane both in normal and delta F 508 CF epithelial cells.  相似文献   

20.
[3H]Cyclosporin diaziridine, a new photoaffinity label, enters rat liver cells in the dark. Photoaffinity labeling of isolated rat liver-cell plasma membranes with this probe modifies several polypeptides with molecular mass of 200, 85, 54, 50, 34 kDa. The major labeled protein of 85 kDa represents 2% of the total plasma membrane protein. A 50 kDa protein is heavily labeled in freshly isolated rat hepatocytes at low temperature and after short incubation in the dark. The 85 kDa protein becomes substituted after longer preincubation periods at temperatures above 10 degrees C. This suggests a localisation at the cytoplasmic side of the membrane. Several controls point to a specific interaction with the above mentioned proteins. Comparison of [3H]cyclosporin-diaziridine- and isothiocyanatobenzamido[3H] cholic acid-labeled membrane proteins reveals identity of binding proteins with the exception of the 85 kDa protein. However, the interaction of bile acids with the 85 kDa protein became apparent at higher concentrations as demonstrated by the differential photoaffinity labeling experiments. In the cytosol of rat liver cells, further [3H]cyclosporin-diaziridine binding proteins could be identified. In particular, a 17 kDa polypeptide was found which appears similar to cyclophilin, a protein known to be present in T-lymphocytes (R. Handschumacher et al. (1984) Science 226, 544-547: Cyclophilin. A specific cytosolic binding protein for cyclosporin A). Proteins with molecular mass of 90, 56, 30, 24, 20 kDa are labeled in AS-30D ascites hepatoma cells and those with molecular mass of 200, 150, 80, 70, 42, 25 kDa in Ehrlich ascites tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号