首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
COP1 and COP9 signalosome (CSN) are key regulators of plant light responses and development. Deficiency in either COP1 or CSN causes a constitutive photomorphogenic phenotype. Through coordinated actions of nuclear- and cytoplasmic-localization signals, COP1 can respond to light signals by differentially partitions between nuclear and cytoplasmic compartments. Previous genetic analysis in Arabidopsis indicated that the nuclear localization of COP1 requires CSN, an eight-subunit heteromeric complex. However the mechanism underlying the functional relationship between COP1 and CSN is unknown. We report here that COP1 weakly associates with CSN in vivo . Furthermore, we report on the direct interaction involving the coiled-coil domain of COP1 and the N-terminal domain of the CSN1 subunit. In onion epidermal cells, expression of CSN1 can stimulate nuclear localization of GUS-COP1, and the N-terminal domain of CSN1 is necessary and sufficient for this function. Moreover, CSN1-induced COP1 nuclear localization requires the nuclear-localization sequences of COP1, as well as its coiled-coil domain, which contains both the cytoplasmic localization sequences and the CSN1 interacting domain. We also provide genetic evidence that the CSN1 N-terminal domain is specifically required for COP1 nuclear localization in Arabidopsis hypocotyl cells. This study advances our understanding of COP1 localization, and the molecular interactions between COP1 and CSN.  相似文献   

2.
3.
The Arabidopsis COP9 signalosome is a multisubunit repressor of photomorphogenesis that is conserved among eukaryotes. This complex may have a general role in development. As a step in dissecting the biochemical mode of action of the COP9 signalosome, we determined the sequence of proteins that copurify with this complex. Here we describe the association between components of the COP9 signalosome (CSN1, CSN7, and CSN8) and two subunits of eukaryotic translation initiation factor 3 (eIF3), eIF3e (p48, known also as INT-6) and eIF3c (p105). To obtain a biochemical marker for Arabidopsis eIF3, we cloned the Arabidopsis ortholog of the eIF3 subunit eIF3b (PRT1). eIF3e coimmunoprecipitated with CSN7, and eIF3c coimmunoprecipitated with eIF3e, eIF3b, CSN8, and CSN1. eIF3e directly interacted with CSN7 and eIF3c. However, eIF3e and eIF3b cofractionated by gel filtration chromatography in a complex that was larger than the COP9 signalosome. Whereas eIF3, as detected through eIF3b, localized solely to the cytoplasm, eIF3e, like CSN7, was also found in the nucleus. This suggests that eIF3e and eIF3c are probably components of multiple complexes and that eIF3e and eIF3c associate with subunits of the COP9 signalosome, even though they are not components of the COP9 signalosome core complex. This interaction may allow for translational control by the COP9 signalosome.  相似文献   

4.
The COP9 signalosome (CSN) is a complex of eight proteins first identified as a repressor of plant photomorphogenesis. A protein kinase activity associated with the COP9 signalosome has been reported but not identified; we present evidence for inositol 1,3,4-trisphosphate 5/6-kinase (5/6-kinase) as a protein kinase associated with the COP9 signalosome. We have shown that 5/6-kinase exists in a complex with the eight-component COP9 signalosome both when purified from bovine brain and when transfected into HEK 293 cells. 5/6-kinase phosphorylates the same substrates as those of the COP9 signalosome, including IkappaBalpha, p53, and c-Jun but fails to phosphorylate several other substrates, including c-Jun 1-79, which are not substrates for the COP9-associated kinase. Both the COP9 signalosome- associated kinase and 5/6-kinase are inhibited by curcumin. The association of 5/6-kinase with the COP9 signalosome is through an interaction with CSN1, which immunoprecipitates with 5/6-kinase. In addition, the inositol kinase activity of 5/6-kinase is inhibited when in a complex with CSN1. We propose that 5/6-kinase is the previously described COP9 signalosome-associated kinase.  相似文献   

5.
6.
The COP9 signalosome is a highly conserved protein complex initially identified as a repressor of photomorphogenesis. Here, we report that subunit 6 of the Arabidopsis COP9 signalosome is encoded by a family of two genes (CSN6A and CSN6B) located on chromosomes V and IV, respectively. The CSN6A and CSN6B proteins share 87% amino acid identity and contain a MPR1p and PAD1p N-terminal (MPN) domain at the N-terminal region. The CSN6 proteins share homology with CSN5 and belong to the Mov34 superfamily of proteins. CSN6 proteins present only in the complex form and coimmunoprecipitate with other known subunits of the COP9 signalosome. Partial loss-of-function strains of the COP9 signalosome created by antisense and cosuppression with CSN6A exhibit diverse developmental defects, including homeotic organ transformation, symmetric body organization, and organ boundary definition. Protein blot analysis revealed that the defective plants accumulate significant amounts of ubiquitinated proteins, supporting the conclusion that the COP9 signalosome regulates multifaceted developmental processes through its involvement in ubiquitin/proteasome-mediated protein degradation.  相似文献   

7.
The Jun activating binding protein (JAB1) specifically stabilizes complexes of c-Jun or JunD with AP-1 sites, increasing the specificity of target gene activation by AP-1 proteins. JAB1 is also known as COP9 signalosome subunit 5 (CSN5), which is a component of the COP9 signalosome regulatory complex (CSN). Over the past year, JAB1/CSN5 has been implicated in numerous signaling pathways including those that regulate light signaling in plants, larval development in Drosophila, and integrin signaling, cell cycle control, and steroid hormone signaling in a number of systems. However, the general role of the CSN complex, and the specific role of JAB1/CSN5, still remain obscure. This review attempts to integrate the available data to help explain the role of JAB1/CSN5 and the COP9 signalosome in regulating multiple pathways (in this review, both JAB1 and CSN5 terminologies are used interchangeably, depending on the source material).  相似文献   

8.
Lier S  Paululat A 《Gene》2002,298(2):109-119
The eukaryotic 26S proteasome plays a central role in ubiquitin-dependent intracellular protein metabolism. The multimeric holoenzyme is composed of two major subcomplexes, known as the 20S proteolytic core particle and the 19S regulatory particle (RP). The RP can be further dissected into two multisubunit complexes, the lid and the base complex. The lid complex shares striking similarities with another multiprotein complex, the COP9 signalosome. Several subunits of both complexes contain the characteristic PCI domain, a structural motif important for complex assembly. The COP9 signalosome was shown to act as a versatile regulator in numerous pathways. To help define the molecular interactions of the signalosome during Drosophila development, we performed a yeast two-hybrid screen to identify proteins that physically interact with subunit 2 of the complex, namely Alien/CSN2. Here, we report that Drosophila Rpn6, a non-ATPase subunit of the RP lid complex, interacts with Alien/CSN2 via its PCI domain. The temporal and spatial expression patterns of Rpn6 and alien/CSN2 overlap on a large scale during development providing additional evidence for their interaction in vivo. Analyses of an Rpn6 P element insertion mutant and newly generated Rpn6 alleles reveal that Rpn6 is essential for Drosophila development.  相似文献   

9.
The COP9 signalosome is a large multiprotein complex that consists of eight subunits termed CSN1-CSN8. The diverse functions of the COP9 complex include regulation of several important intracellular pathways, including the ubiquitin/proteasome system, DNA repair, cell cycle, developmental changes, and some aspects of immune responses. Nod1 is also thought to be an important cytoplasmic receptor involved in innate immune responses. It detects specific motifs of bacterial peptidoglycan, and this results in activation of multiple signaling pathways and changes in cell function. In this report, we performed a yeast two-hybrid screening and discovered that Nod1 interacts with several components of the COP9 signalosome through its CARD domain. Moreover, we observed that activation of the Nod1 apoptotic pathway leads to specific cleavage of the subunit CSN6. This cleavage is concomitant with caspase processing and generates a short amino-terminal peptide of 3 kDa. A complete inhibition of this cleavage was achieved in the presence of the broad spectrum pharmacological inhibitor of apoptosis, Z-VAD. Furthermore, overexpression of CLARP, a specific caspase 8 inhibitor, completely blocked cleavage of CSN6. Taken together, these results suggest a critical role of caspase 8 in the processing of CSN6. Moreover, these findings suggest that CSN6 cleavage may result in modifications of functions of the COP9 complex that are involved in apoptosis.  相似文献   

10.
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27Kip1 stability, and that COP1 is a negative regulator of p27Kip1. Ectopic expression of CSN6 can decrease the expression of p27Kip1, while CSN6 knockdown leads to p27Kip1 stabilization. Mechanistic studies show that CSN6 interacts with p27Kip1 and facilitates ubiquitin-mediated degradation of p27Kip1. CSN6-mediated p27 degradation depends on the nuclear export of p27Kip1, which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.  相似文献   

11.
The COP9 signalosome (CSN) is a multiprotein complex of the ubiquitin-proteasome pathway. CSN is typically composed of eight subunits, each of which is related to one of the eight subunits that form the lid of the 26S proteasome regulatory particle. CSN was first identified in Arabidopsis where it is required for the repression of photomorphogenic seedling development in the dark. CSN or CSN-related complexes have by now been reported from most eukaryotic model organisms and CSN has been implicated in a vast array of biological processes. It is widely accepted that CSN directly interacts with cullin-containing E3 ubiquitin ligases, and that CSN is required for their proper function. The requirement of CSN for proper E3 function may at least in part be explained by the observation that CSN subunit 5 (CSN5) is the isopeptidase that deconjugates the essential ubiquitin-like Nedd8 modification from the E3 cullin subunit. In addition to its interaction with E3s, CSN may also regulate proteolysis by its association with protein kinases and deubiquitylating enzymes. This review provides a summary of the role of CSN in regulating protein degradation and in eukaryotic development.  相似文献   

12.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.Key words: ubiquitination, CSN, COP9 signalosome, Mdm2, p53, cancer, MPN domain, neddylation, Nedd8, cullin  相似文献   

13.
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.  相似文献   

14.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.  相似文献   

15.
16.
17.
The COP9 signalosome (CSN) is a multifunctional protein complex essential for arabidopsis development. One of its functions is to promote Rub1/Nedd8 deconjugation from the cullin subunit of the Skp1-cullin-F-box ubiquitin ligase. Little is known about the specific role of its eight subunits in deneddylation or any of the physiological functions of CSN. In the absence of CSN1 (the fus6 mutant), arabidopsis CSN complex cannot assemble, which destabilizes multiple CSN subunits and contributes, together with the loss of CSN1, to the phenotype of fus6. To distinguish CSN1-specific functions, we attempted to rescue the complex formation with deletion or point-mutation forms of CSN1 expressed as transgenes in fus6. We show that the central domain of CSN1 is critical for complex assembly, whereas the C-terminal domain has a supporting role. By expressing the C231 fragment, which contains the structural information but lacks the presumed functional domain located at the N terminus, we have rescued the complex formation and restored the Rub1/Nedd8 deconjugation activity on cullins (fus6/C231). Nonetheless, fus6/C231 exhibits pleiotropic phenotype, including photomorphogenic defects and growth arrest at seedling stage. We conclude that CSN1 N-terminal domain is not required for the Rub1/Nedd8 deconjugation activity of cullins, but contributes to a significant aspect of CSN functions that are essential for plant development.  相似文献   

18.
Zhang H  Gao ZQ  Wang WJ  Liu GF  Shtykova EV  Xu JH  Li LF  Su XD  Dong YH 《FEBS letters》2012,586(8):1147-1153
The COP9 signalosome (CSN) is a multiprotein complex containing eight subunits and is highly conserved from fungi to human. CSN is proposed to widely participate in many physiological processes, including protein degradation, DNA damage response and signal transduction. Among those subunits, only CSN5 and CSN6 belong to JAMM family. CSN5 possesses isopeptidase activity, but CSN6 lacks this ability. Here we report the 2.5 Å crystal structure of MPN domain from Drosophila melanogaster CSN6. Structural comparison with other MPN domains, along with bioinformation analysis, suggests that MPN domain from CSN6 may serve as a scaffold instead of a metalloprotease.Structured summary of protein interactionsCSN6 and CSN6 bind by x-ray crystallography (View interaction)CSN6 and CSN6 bind by x ray scattering (View interaction)  相似文献   

19.
20.
The COP9 signalosome is a highly conserved eight-subunit protein complex initially defined as a repressor of photomorphogenic development in Arabidopsis. It has recently been suggested that the COP9 signalosome directly interacts and regulates SCF type E3 ligases, implying a key role in ubiquitin-proteasome mediated protein degradation. We report that Arabidopsis FUS11 gene encodes the subunit 3 of the COP9 signalosome (CSN3). The fus11 mutant is defective in the COP9 signalosome and accumulates significant amount of multi-ubiquitinated proteins. The same mutant is specifically impaired in the 26S proteasome-mediated degradation of HY5 but not PHYA, indicating a selective involvement in protein degradation. Reduction-of-function transgenic lines of CSN3 produced through gene co-suppression also accumulate multi-ubiquitinated proteins and exhibit diverse developmental defects. This result substantiates a hypothesis that the COP9 signalosome is involved in multifaceted developmental processes through regulating proteasome-mediated protein degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号