首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Isolated nuclei of the unicellular alga Olisthodiscus luteus, the uninucleate dinoflagellate Crypthecodinium cohnii and the binucleate dinoflagellate Peridinium balticum were lysed and deposited on grids by the microcentrifugation technique. The ultrastructure of the released chromatin fibers was compared to that of mouse liver nuclei. Chromatin from nuclei of Olisthodiscus luteus and the eukaryotic1 nuclei of Peridinium balticum, appeared as linear arrays of regularly repeating subunits which were identical in size and morphology to mouse nucleosomes. In contrast, the chromatin fibers from Crypthecodinium cohnii nuclei appeared as smoothe threads with a diameter of about 6.5 nm. Nuclear preparations containing mixtures of dinokaryotic and eukaryotic nuclei of Peridinium balticum also contained smooth fibers which most likely originated from the dinokaryotic nuclei. These and other results demonstrating the presence of nucleosomes in lower eukaryotes suggest that the subunit structure of chromatin arose very early in the evolution of the eukaryotic cell.  相似文献   

2.
The mesokaryote Gyrodinium cohnii lacks nucleosomes   总被引:3,自引:0,他引:3  
The dinoflagellate Gyrodiniumcohnii has a distinct nuclear membrane but apparently lacks histones associated with its chromatin. Approximately 13% of the nuclear DNA is rapidly digested by micrococcal nuclease to acid soluble fragments and not to nucleosomal sized fragments as in the typical eukaryote. Moreover in the electron microscope the chromatin of G.cohnii appears as a thin filament of 40–60 Å in width without regularly spaced nucleosomes. These observations support the view that the dinoflagellates exhibit characteristics of both prokaryotes and eukaryotes.  相似文献   

3.
The subunit structure of chromatin from Physarum polycephalum.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nucleosome DNA repeat lengths in Physarum chromatin, determined by nuclease digestion experiments, are shorter than those observed in most mammalian chromatin and longer than those reported for chromatin of certain other lower eukaryotes. After digestion with staphylococcal nuclease for short periods of time an average repeat length of 190 base pairs is measured. After more extensive digestion an average repeat length of 172 base pairs is measured. Upon prolonged digestion DNA is degraded to an average monomer subunit length of 160 base pairs, with only a small amount of DNA found in lengths of 130 base pairs or smaller. Mathematical analysis of the data suggests that the Physarum nucleosome DNA repeat comprises a protected DNA segment of about 159 base pairs with a nuclease-accessible interconnecting segment which ranges from 13 to 31 base pairs. The spacing data are compatible with measurements from electron micrographs of Physarum chromatin.  相似文献   

4.
5.
After removal of histone H1 about 40% of DNA in chromatin acquires the sensitivity of naked DNA to DNAse I. Digestion of H1-depleted chromatin with DNAse I leads to a qualitative change in the digestion pattern, generating DNA fragments of approx. 200 b.p. and multiples, similar to those obtained with micrococcal nuclease. Both effects are reversed upon reconstitution of purified H1 to H1-depleted chromatin.  相似文献   

6.
7.
DNA in the micrococcal nuclease limit digest of chromatin is completely resistant to DNAse II. At least part of this resistance is not a property of the untreated chromatin, but is acquired in the course of digestion.  相似文献   

8.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

9.
Digestion of Euglena nuclei or extracted chromatin with micrococcal nuclease results in the identification of a repeating structure. The DNA repeat size, analyzed on agarose and polyacrylamide gels, is found to be 225±13 base pairs. DNase I digestion produces a serie of fragments multiples of roughly 10 bases. Eventhough pressure shearing is necessary to disrupt the though pellicule of the phytoflagellate, we confirm that, in Euglena, chromatin organization is similar to that of other eukaryotes.  相似文献   

10.
11.
The structure of the Sipunculus erythrocyte chromatin has been characterized by electron microscopy and nuclease digestion (staphylococcal nuclease and pancreatic nuclease). Contrary to previous results [1], we were able to isolate and characterize a histone H2B in sipunculid nuclei. Though the histones H2A and H2B were markedly different from their vertebrate homologues, the subunit structure of the chromatin is the same. But the length of the repeat unit of DNA in the chromatin, is 177 ± 5 bp for the sipunculid erythrocyte nuclei, close to that reported for the chromatin of some lower eukaryotes.  相似文献   

12.
Nuclei from calf thymus tissue digested with micrococcal nuclease under nonchelating conditions yielded soluble nucleoprotein enriched in copper. Following limited digestion, the ratio of μg Cu:mg DNA was inversely related either to percent solubility of chromatin or to levels of enzyme maintaining an enzyme:A 260 ratio of 0.059. The enzyme appeared to cleave preferentially regions of chromatin where copper is localized, releasing no additional metal upon further digestion. Moreover, the highest copper: DNA ratio was always associated with the least-digested sample. The distribution between copper and angiotensin II (AII) in chromatin fragments following slight nuclease digestion suggests a possible link between copper and nuclear AII binding. When nuclei are incubated with AII prior to digestion and dialysis, solubilized chromatin contained about three times more copper than buffer control. Metal profiles generated from gel (A-5 M) chromatography for these samples were distinctive: copper peaks appeared near or adjacent to linker DNA regions, and in the case of AII, coincided with fragments containing specific AII receptors; thus, there appears to be an enrichment of copper in these active nucleoprotein fragments.  相似文献   

13.
Chromatin in isolated rat liver nuclei was compared with chromatin in (i) nuclei depleted of H1 by acid extraction; (ii) nuclei treated at pH 3.2 (without removal of H1), and (iii) depleted nuclei following reassociation of H1. Electron microscopy and digestion by DNase I, micrococcal nuclease and endogenous Ca/Mg endonuclease were used for this comparative examination. Electron micrographs of H1-depleted nuclei showed a dispersed and finely granular appearance. The rate of DNA cleavage by micrococcal nuclease or DNase I was increased several-fold after H1 removal. Discretely sized intermediate particles produced by Ca/Mg endonuclease in native nuclei were not observed in digests of depleted nuclei. Digestion by micrococcal nuclease to chromatin particles soluble in 60 mM NaCl buffer appeared not to be affected in depleted nuclei. When nuclei were treated at pH 3.2, neither the appearance of chromatin in electron micrographs nor the mode or rate of nuclease digestion changed appreciably. Following reassociation of H1 to depleted nuclei, electron micrographs demonstrated the reformation of compacted chromatin, but the lower rate of DNA cleavage in native nuclei was not restored. Further, H1 reassociation produced a significant decrease in the solubility of nuclear chromatin cleaved by micrococcal nuclease or Ca/Mg endonuclease. In order to evaluate critically the reconstitution of native chromatin from H1-depleted chromatin we propose the use of digestion by a variety of nucleases in addition to an electron microscopic examination.  相似文献   

14.
The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25–80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.  相似文献   

15.
16.
G0, G1, and mammalian cells and nuclei were shortly digested with either micrococcal nuclease or DNAse I, both before and after mild fixation, either before (G0) or after (G1) partial hepatectomy. Cells were Feulgen stained and examined by high resolution light microscopy. In metabolically active G1 nuclei, intranuclear DNA appears organized at least in two distinct domains, whereby, the highly dispersed one is large enough to be detected at the resolution of the light microscope and appears preferentially attacked by limited DNAse I digestion. The action of the enzyme is readily apparent only in the nuclei that are first digested and then fixed. Spectroscopic characterization of the same nuclei reveals that the fixation causes a sizeable removal of proteins, mostly in the soluble chromatin subfraction. Results are discussed in terms of two control levels for gene expression and for higher order DNA structure.  相似文献   

17.
G0, G1, and mammalian cells and nuclei were shortly digested with either micrococcal nuclease or DNAse I, both before and after mild fixation, either before (G0) or after (G1) partial hepatectomy. Cells were Feulgen stained and examined by high resolution light microscopy. In metabolically active G1 nuclei, intranuclear DNA appears organized at least in two distinct domains, whereby the highly dispersed one is large enough to be detected at the resolution of the light microscope and appears preferentially attacked by limited DNAse I digestion. The action of the enzyme is readily apparent only in the nuclei that are first digested and then fixed. Spectroscopic characterization of the same nuclei reveals that the fixation causes a sizeable removal of proteins, mostly in the soluble chromatin subfraction. Results are discussed in terms of two control levels for gene expression and for higher order DNA structure.  相似文献   

18.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

19.
20.
Nascent DNA in nucleosome like structures from chromatin   总被引:17,自引:0,他引:17  
A Levy  K M Jakob 《Cell》1978,14(2):259-267
We have used chromatin sensitivity to cleavage by micrococcal nuclease as a probe for differences between chromatin containing nascent DNA and that containing bulk DNA. Micrococcal nuclease digested the nascent DNA in chromatin of swimming blastulae of sea urchins more rapidly to acid-soluble nucleotides than the DNA of bulk chromatin. A part of the nascent DNA occurred in micrococcal nuclease-resistant structures which were either different from, or temporary modifications of, the bulk nucleosomes. This was inferred from the size differences between bulk and nascent DNA fragments in 10% polyacrylamide gels after micrococcal nuclease digestion of nuclei from a mixture of 14C-thymidine long- and 3H-thymidine pulse-labeled embryos. Bulk monomer and dimer DNA fragments contained about 170 and 410 base pairs (bp), respectively, when 18% of the bulk DNA had been rendered acid-soluble. At this level of digestion, “nascent monomer DNA” fragments of about 150 bp as well as 305 bp “large nascent DNA fragments” were observed. Increasing levels of digestion indicated that the large nascent DNA fragment was derived from a chromatin structure which was more resistant to micrococcal nuclease cleavage than bulk dimer chromatin subunits. Peaks of 3H-thymidine-labeled DNA fragments from embryos which had been pulse-labeled and then chased or labeled for several minutes overlapped those of 14C-thymidine long-labeled monomer, dimer and trimer fragments. This indicated that the chromatin organization at or near the replication fork which had temporarily changed during replication had returned to the organization of its nonreplicating state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号