首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of ethylenediaminetetraacetate (EDTA) on the mitogen response of porcine lymphocytes and the role of metal ions in reversal of the inhibitory effect of EDTA were determined. Porcine lymphocyte responses to mitogens were totally suppressed when serum used to supplement Ca2+, Mg2+-free minimum essential medium (MEM) was dialyzed against saline or saline with 0.2 or 0.60 mM EDTA, but the responses were only partially reduced when the same serum was added to RPMI-1640 medium. The inhibition observed in MEM could be reversed by adding 1×10−3 M Ca2+ and 1×10−3 M Mg2+ to the dialyzed serum. Serum treated directly with 0.60 mM EDTA completely suppressed blastogenesis in lymphocyte cultures maintained in RPMI-1640 or Ca2+, Mg2+ free MEM. The inhibitory effect of EDTA-treated serum could be completely reversed by adding Zn2+ or a combination of Zn2+ with other cationic ions, or partially reversed by adding Ni2+ or Fe3+. Zn2+ was the most effective ion, in that it was the only ion that, when alone added to the serum, could completely restore lymphocyte responses to phytohemagglutinin (PHA) or pokeweed mitogen (PWM).  相似文献   

2.
The present work describes the existence of a haemolytic activity in the serum of tench, Tinca tinca, against rabbit red blood cells (RRBC) which was identified as belonging to the alternative complement pathway from the following findings: haemolytic activity disappeared when the serum was heated to 45°C for 20 min; 10 mM EDTA, which chelates Ca2+ and Mg2+, induced a complete loss of haemolysis; Mg2+, but not Ca2+, was required for the activity, and the use of sheep red blood cells (SRBC), which have a high content of sialic acid, resulted in the serum activity falling to a very low degree of haemolysis. The ACH50 value (units ml-1 serum) was defined as the reciprocal of the serum dilution necessary to lyse 50% of 4 × 107 RRBC in a buffered medium of normal ionic strength (μ=0·15) containing 10 mM EGTA and optimum concentrations of Mg2+. The optimum conditions for the ACH50 assay were: pH 7·2-7-7; reaction temperature, 15°C; concentration of Mg2+, 5 mM; and reaction time, 90 min. Under these conditions, the values of ACH50 in spring, summer, autumn and winter for male tench were 69±13, 91±22, 90±36 and 137±41, and for female tench 100±11, 108±13, 82±12 and 145±17. The highest serum activity was found in the winter, suggesting the importance of this pathway during cold periods when the specific immune response is depressed in ectothermic vertebrates.  相似文献   

3.
Mg2+ in various concentrations was added to purified Rubisco in vitro to gain insight into the mechanism of molecular interactions between Mg2+ and Rubisco. The enzyme activity assays showed that the reaction between Rubisco and Mg2+ was two order, which means that the enhancement of Rubisco activity was accelerated by low concentration of Mg2+ and slowed by high concentration of Mg2+. The kinetics constant (K m) and V max was 1.91 μM and 1.13 μmol CO2 mg−1 protein∙min−1, respectively, at a low concentration of Mg2+, and 3.45 μM and 0.32 μmol CO2∙mg−1 protein∙min−1, respectively, at a high concentration of Mg2+. By UV absorption and fluorescence spectroscopy assays, the Mg2+ was determined to be directly bound to Rubisco; the binding site of Mg2+ to Rubisco was 0.275, the binding constants (K A) of the binding site were 6.33 × 104 and 5.5 × 104 l·mol−1. Based on the analysis of the circular dichroism (CD) spectra, it was concluded that the binding of Mg2+ did not alter the secondary structure of Rubisco, suggesting that the observed enhancement of Rubisco carboxylase activity was caused by a subtle structural change in the active site through the formation of the complex with Mg2+.  相似文献   

4.
Vacuoles isolated from storage roots of red beet (Beta vulgaris L.) posess a Mg2+-dependent, alkaline pyrophosphatase (PPase) activity which is further stimulated by salts of monovalent cations. The requirement for Mg2+ is specific. Mn2+ and Zn2+ permitted only 20% and 12%, respectively, of the PPase activity obtained in the presence of Mg2+ while Ca2+, Co2+ and Cu2+ were ineffective. Stimulation of Mg2+-PPase activity by salts of certain monovalent cations was due to the cation and the order of effectiveness of the cations tested was K+=Rb+=NH 4 + >Cs+. Salts of Li+ and Na+ inhibited Mg2+-PPase activity by 44% and 24%, respectively. KCl-stimulation of Mg2+-PPase activity was maximal with 60–100 mM KCl. There was a sigmoidal relationship between PPase activity and Mg2+ concentrations which resulted in markedly non-linear Lineweaver-Burk plots. At pH 8.0, the optimal [Mg2+]:[PPi] ratio for both Mg2+-PPase and (Mg2++KCl)-PPase activities was approximately 1:1, which probably indicates MgP2O7 2- is the true substrate.Abbreviations BSA bovine serum albumen - EDTA ethylenediamine tetra-acetic acid, disodium salt - MES 2-(N-morpholino)ethanesulphonic acid - Mg T 2+ total magnesium - Pi inorganic phosphate - PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)methylamine  相似文献   

5.
Inside-out vesicles (IOV) were prepared from human red blood cells. Steady-state uptake of 22Na was observed to generally follow an exponential time course with a rate constant of 1.57 ± 0.09 h?1 (SE). One week of cold storage (0–4°C) increased the rate constant to 2.50 ± 0.12 h ?1 (SE). Mg2+, Ca2+, or Sr2+ decreased the rate of 22Na uptake with no observable differences between the three divalent cations when tested at concentrations of 50 μM. Mg2+ was shown to decrease the rate of 22Na uptake at concentrations as low as 5 μM with maximal effect at 50 to 100 μM. The decrease in rate of 22Na uptake induced by Mg2+ could be enhanced by exposure of IOV to Mg2+ for longer periods of time. Trypsin treatment of IOV increased the rate of uptake of 22Na and was dependent on the concentration of trypsin added between 5 to 25 μg/ml (treated for 5 min at 25°C). The ability of Mg2+ (50 μM) to decrease the rate of 22Na uptake was still observed after maximal trypsin treatment. Phospholipase A2 or phospholipase C treatment of IOV increased the rate of 22Na uptake and was dependent on the amount of phospholipase A2 (0.1 to 1.0 units/ml) or phospholipase C (0.25 to 2.5 units/ml) added (treated for 5 min at 25°C). After phospholipase A2 treatment, the observed decrease in the rate of 22Na uptake induced by Mg2+ (50 μM) was generally greater than controls. After phospholipase C treatment, the observed decrease in rate of 22Na uptake induced by Mg2+ (50 μM) was less or absent when compared with controls. Phospholipase C treatment was less effective in preventing the Mg2+ effect the longer IOV were exposed to Mg2+. The results suggest that Mg2+ binds to phospholipid head-groups to reduce Na permeability perhaps by inducing a change in bilayer structure or phospholipid association.  相似文献   

6.
Jajoo  Anjana  Bharti  Sudhakar 《Photosynthetica》2000,37(4):529-535
Cations such as Mg2+ regulate spillover of absorbed excitation energy mainly in favour of photosystem (PS) 2. Effect of low concentration (<10 mM) of the monovalent cation Na+ on chlorophyll (Chl) a fluorescence was completely overridden by divalent cation Mg2+ (5 mM). Based on Chl a fluorescence yield and 77 K emission measurements, we revealed the role and effectiveness of anions (Cl-, SO4 2-, PO4 3-) in lowering the Mg2+-induced PS2 fluorescence. The higher the valency of the anion, the lesser was the expression of Mg2+ effect. Anions may thus overcome Mg2+ effects up to certain extent in a valency dependent manner, thereby diverting more energy to PS1 even in the presence of MgCl2. They may do so by reversing Mg2+-induced changes.  相似文献   

7.
Abstract

Under standard conditions (Mg2+/150 mM NH4 +) ribosomes can quantitatively participate in tRNA binding at Mg2+ concentrations of 12 to 15 mM. The overall poly(U)-directed Phe incorporation and the extent of tRNA binding to either P,E or A sites decrease in a parallel manner when the Mg2+ concentration is lowered below 10 mM. At 4 mM the inactivation amounts to about 80%. The coordinate inactivation of all three binding sites is accompanied by an increasing impairment of the ability to translocate A-site bound AcPhe-tRNA to the P site. The translocation efficiency is already reduced at 10 mM Mg2+, and is completely blocked at 6—8 mM.

The severe inactivation seen at 6 mM Mg2+ vanishes when the polyamines spermine (0.6 mM) and spermidine (0.4 mM) are present in the assay; tRNA binding again becomes quantitative, the total Phe synthesis even exceeds that observed in the absence of polyamines by a factor of 4. In the presence of polyamines and low Mg2+ (3 and 6 mM) two essential features of the allosteric three-site model (Rheinberger and Nierhaus,J.Biol. Chem. 261, 9133 (1986)) are demonstrated. 1) Deacylated tRNA is not released from the P site, but moves to the E site during the course of translocation. 2) Occupation of the E site reduces the A site affinity and vice versa (allosteric interactions between E and A sites).

The quality of an in vitro system for protein synthesis can be assessed by two criteria. First, the incubation conditions must allow a near quantitative tRNA binding. Secondly, protein synthesis should proceed with near in vivo rate and accuracy. The 3 mM Mg2+/NH4 +/polyamine- system seems to be the best compromise at present between these two requirements.  相似文献   

8.
When growing cultures of a salt-sensitive strain of Staphylococcus aureus were inoculated on nutrient agar containing 0.8 m NaCl and 0.5% bovine serum albumin, typical colonies of L-form developed extensively after 2 days of incubation at 30 C. Incubation of growing cultures with lipoteichoic acid, sodium polyanethole sulfonate and subtilisin resulted in inhibition of L-form induction.  相似文献   

9.
AimsLoss of magnesium (Mg2+) inhibits cell proliferation and augments nephrotoxicant-induced renal injury, but the role of Mg2+ has not been clarified in detail. We examined the effect of extracellular Mg2+ deprivation on a MEK–ERK cascade and cell proliferation using a renal epithelial cell line, Madin-Darby canine kidney (MDCK) cells.Main methodsMDCK cells were cultured in Mg2+-containing or Mg2+-free media. A HA-tagged constitutively active (CA)-MEK1 and a dominant negative (DN)-MEK1 were transfected into MDCK cells. The level of protein was examined by Western blotting. The intracellular free Mg2+ concentration ([Mg2+]i) was measured using a fluorescent dye, mag-fura 2. Cell proliferation was determined by WST-1 assay. Dead cells were identified by staining with annexin V-FITC and propidium iodide.Key findingsIn the presence of fetal calf serum (FCS), Mg2+ deprivation decreased phosphorylated-ERK1/2 (p-ERK1/2) levels and [Mg2+]i. Re-addition of Mg2+ increased p-ERK1/2 levels, which were inhibited by U0126, a specific inhibitor of a MEK–ERK cascade. Glutathione-S-transferase pull-down and coimmunoprecipitation assays showed that CA-MEK1 and DN-MEK1 binds with ERK1/2 in the presence of Mg2+. In contrast, neither CA-MEK1 nor DN-MEK1 bound to ERK1/2 in the absence of Mg2+. These results indicate that the MEK–ERK cascade is regulated by [Mg2+]i. Cell proliferation was increased by the treatment with FCS or the expression of CA-MEK1 in the presence of Mg2+, but was inhibited by Mg2+ deprivation. Mg2+ deprivation did not increase the number of dead cells.SignificanceMg2+ is involved in the regulation of the MEK–ERK cascade and cell proliferation in MDCK cells.  相似文献   

10.
The properties of Mg2+ conductances in Paramecium tetraurelia were investigated under two-electrode voltage clamp. When bathed in physiological Mg2+ concentrations (0.5 mm), depolarizing steps from rest elicited a prominent Mg2+-specific current (I Mg) that has been noted previously. The dependence of this current on extracellular Mg2+ approximated that of Mg2+-induced backward swimming, demonstrating that I Mg contributes to normal membrane excitation and behavior in this ciliate. Closer analysis revealed that the Mg2+ current deactivated biphasically. While this might suggest the involvement of two Mg2+-specific pathways, both tail-current components were affected similarly by current-specific mutations and they had similar ion selectivities, suggesting a common pathway. In contrast, a Mg2+ current activated upon hyperpolarization could be separated into three components. The first, I Mg, had similar properties to the current activated upon depolarization. The second was a nonspecific divalent cation current (I NS) that was revealed following suppression of I Mg by eccentric mutation. The final current was relatively minor and was revealed following suppression of I Mg and I NS by obstinate A gene mutation. Reversal-potential analyses suggested that I Mg and I NS define two intracellular compartments that contain, respectively, low (0.4 mm) and high (8 mm) concentrations of Mg2+. Measurement of intracellular free Mg2+ using the fluorescent dye, Mag-fura-2, suggested that bulk [Mg2+] i rests at around 0.4 mm in Paramecium. Received: 12 January 1998/Revised: 16 March 1998  相似文献   

11.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

12.
Summary Whole-cell and single-channel patch-clamp experiments were performed on unfertilized oocytes of the ascidianCiona intestinalis to investigate the properties of two voltage-dependent Ca2+ currents found in this cell. The peak of the low threshold current (channel I) occurred at –20 mV, the peak of the high-threshold current (channel II) at +20 mV. The two currents could be distinguished by voltage dependence, kinetics of inactivation and ion selectivity. During large depolarizing voltage pulses, a transient outward current was recorded which appeared to be due to potassium efflux through channel II. When the external concentrations of Ca2+ and Mg2+ were reduced sufficiently, large inward Na currents flowed through both channels I and II. Using divalent-free solutions in cell-attached patch recordings, single-channel currents representing Na influx through channels I and II were recorded. The two types of unitary events could be distinguished on the basis of open time (channel I longer) and conductance (channel I smaller). Blocking events during changel I openings were recorded when micromolar concentrations of Ca2+ or Mg2+ were added to the patch pipette solutions. Slopes of the blocking rate constantvs. concentration gave binding constants of 6.4×106 m –1 sec–1 for Mg2+ and 4.5×108 m –1 sec–1 for Ca2+. The Ca2+ block was somewhat relieved at negative potentials, whereas the Mg2+ block was not, suggesting that Ca2+, but not Mg2+, can exit from the binding site toward the cell interior.  相似文献   

13.
The gating of ryanodine receptor calcium release channels (RyRs) depends on myoplasmic Ca2+ and Mg2+ concentrations. RyRs from skeletal and cardiac muscle are activated by μm Ca2+ and inhibited by mm Ca2+ and Mg2+. 45Ca2+ release from skeletal SR vesicles suggests two mechanisms for Mg2+-inhibition (Meissner, Darling & Eveleth, 1986, Biochemistry 25:236–244). The present study investigates the nature of these mechanisms using measurements of single-channel activity from cardiac- and skeletal RyRs incorporated into planar lipid bilayers. Our measurements of Mg2+- and Ca2+-dependent gating kinetics confirm that there are two mechanisms for Mg2+ inhibition (Type I and II inhibition) in skeletal and cardiac RyRs. The mechanisms operate concurrently, are independent and are associated with different parts of the channel protein. Mg2+ reduces P o by competing with Ca2+ for the activation site (Type-I) or binding to more than one, and probably two low affinity inhibition sites which do not discriminate between Ca2+ and Mg2+ (Type-II). The relative contributions of the two inhibition mechanisms to the total Mg2+ effect depend on cytoplasmic [Ca2+] in such a way that Mg2+ inhibition has the properties of Types-I and II inhibition at low and high [Ca2+] respectively. Both mechanisms are equally important when [Ca2+] = 10 μm in cardiac RyRs or 1 μm in skeletal RyRs. We show that Type-I inhibition is not the sole mechanism responsible for Mg2+ inhibition, as is often assumed, and we discuss the physiological implications of this finding. Received: 1 January 1996/Revised: 14 November 1996  相似文献   

14.
The effects of Ca2+ and Mg2+ on cellular growth and calcification in Pleurochrysis haptonemofera were investigated. In the presence of a normal concentration of Mg2+, coccolith-bearing cells (C-cells) required more than 0.5 mM Ca2+ for growth, while naked cells could grow even with 0.5 mM Ca2+. The calcification rate of C-cells, which was determined using decalcified cells, was significantly repressed with less than or equal to 0.5 mM Ca2+. Although the calcification rate did not change so much with 5–30 mM Ca2+, it decreased with higher concentrations of Ca2+, as well as C-cell-specific growth repression. Under these conditions, Ca2+ affected the rate of coccolith formation, but neither the coccolith morphology nor total amounts and ratios of divalent cations and acidic polysaccharides (Ph-PS-1, -2, and -3) were included in coccoliths. These findings suggest that sufficient calcification is required for the division of C-cells. Under low Ca2+ and high Mg2+ conditions, coccoliths with an abnormal morphology, having immature shield elements, were synthesized. Composition analysis of the coccoliths revealed high Mg/Ca and low Ph-PS-2/(Ph-PS-1 and -3) ratios, as compared with those under low Ca2+ and normal Mg2+ conditions, suggesting that the abnormal morphology is due to a change in the crystal type and/or acidic polysaccharide composition.  相似文献   

15.
H Krakauer 《Biopolymers》1971,10(12):2459-2490
The binding of Mg ++ to polyadenylate (poly A), Polyuridylate(poly U), and their complexes, poly (A + U) and poly (A + 2U), was studied by means of a technique in which the dye eriochrome black T is used to measure the concentration of free Mg?. The apparent binding constant KX = [MgN]/[Mg++][N], N = site for Mg++ binding (the phosphate group of the nucleotide), was found to decrease rapidly as the extent of binding increased and, at low extents of binding, as the concentration of Na? increased in poly A, poly (A + U), and poly (A + 2U), and somewhat less so in poly U. Kx is generally in the range 104 > KX > 102. The cause of these dependences is apparently, primarily, the displacement of Na+ by Mg++ in poly U and poly (A + U) on the basis of the similarity of extents of displacement measured in this work and those measured potentiometrically. was calculated and was found to approach zero as the concentration of Na+ increased. In poly U, poly (A + U), and poly (A + 2U) at low ΔH′ v.H. > 0, about + 2 kcal/“mole.” In poly A, also at low salt, ΔH′ v.H. ≈ ?4 kcal/“mol” for the initial binding of Mg++, and increases to +2 kcal/“mol” at saturation. This enthalpic variation probably accounts for the anticooperativity in the binding of Mg++ not ascribable to the displacement of Na++.  相似文献   

16.
Single-photon timing with picosecond resolution is used to investigate the effect of Mg2+ on the room-temperature fluorescence decay kinetics in broken spinach chloroplasts. In agreement with an earlier paper (Haehnel, W., Nairn, J.A., Reisberg, P. and Sauer, K. (1982) Biochim. Biophys. Acta 680, 161–173), we find three components in the fluorescence decay both in the presence and in the absence of Mg2+. The behavior of these components is examined as a function of Mg2+ concentration at both the F0 and the Fmax fluorescence levels, and as a function of the excitation intensity for thylakoids from spinach chloroplasts isolated in the absence of added Mg2+. Analysis of the results indicates that the subsequent addition of Mg2+ has effects which occur at different levels of added cation. At low levels of Mg2+ (less than 0.75 mM), there appears to be a decrease in communication between Photosystem (PS) II and PS I, which amounts to a decrease in the spillover rate between PS II and PS I. At higher levels of Mg2+ (about 2 mM), there appears to be an increase in communication between PS II units and an increase in the effective absorption cross-section of PS II, probably both of these involving the chlorophyll light-harvesting antenna.  相似文献   

17.
18.
Uridine monophosphate (UMP) kinase converts UMP to the corresponding UDP in the presence of metal ions and ATP and is allosterically regulated by nucleotides such as UTP and GTP. Although the UMP kinase reported to date is Mg2+-dependent, we found in this study that the UMP kinase of Helicobacter pylori had a preference for Mn2+ over Mg2+, which may be related to a conformational difference between the Mn2+-bound and Mg2+-bound UMP kinase. Similar to previous findings, the UMP kinase activity of H. pylori UMP kinase was inhibited by UTP and activated by GTP. However, a relatively low GTP concentration (0.125 mM) was required to activate H. pylori UMP kinase to a level similar to other bacterial UMP kinases using a higher GTP concentration (0.5 mM). In addition, depending on the presence of either Mg2+ or Mn2+, a significant difference in the level of GTP activation was observed. It is therefore hypothesized that the Mg2+-bound and Mn2+-bound H. pylori UMP kinase may be activated by GTP through different mechanisms.  相似文献   

19.
Summary (Ca2++Mg2+)-stimulated ATPase of human red cell membranes as a function of ATP concentration was measured at fixed Ca2+ concentration and at two different but constant Mg2+ concentrations. Under the assumption that free ATP rather than Mg-ATP is the substrate, a value forK m (for ATP) of 1–2m is found which is in good agreement with the value obtained in the phosphorylation reaction by A.F. Rega and P.J. Garrahan (1975.J. Membrane Biol. 22:313). Mg2+ increases both the maximal rate and the affinity for ATP, whereas Ca2+ increases the maximal rate without affectingK m for ATP.As a by-product of these experiments, it was shown that after thorough removal of intracellular proteins the adenylate kinase reaction at approximately 1mm substrate concentration is several times faster than maximal rate of (Ca2++Mg2+)-ATPase in red cell membranes.  相似文献   

20.
Pseudomonas marina (ATCC 27 129) rapidly aggregates when suspended in buffered artificial seawater (ASW). Light microscopic observations of stained preparations, showed that flagella-flagella contact was responsible for this phenomenon. Aggregation did not occur if flagella were sheared off, or if motility was inhibited with NaN3. Aggregates were not observed when Mg2+ was omitted from ASW, even though the bacteria remained motile. Other divalent cations, including Ca2+, Mn2+, and Ba2+ could replace Mg2+. However, there is no absolute requirement for divalent cations, since aggregation occurred in ASW containing Cs+ or Li+ instead of Mg2+. P. marina aggregates developed from pH 5.8–8.4, but not below pH 5.8 even though motility continued unimpaired to pH 4.5.Abbreviation ASW artificial seawater  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号