首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Extracts from 44 species of Vietnamese marine algae, including 15 Chlorophyta, 18 Rhodophyta and 11 Phaeophyta species, were examined for hemagglutination activity with a variety of different animal and human erythrocytes that were untreated or treated with enzymes. Almost all extracts showed activity toward at least one type of erythrocytes, although those from three Chlorophyta and two Rhodophyta species showed no hemagglutination with any type of erythrocytes examined. Strong activity was detected in extracts from two Chlorophyta (Anadyomene plicata and Avrainvillea erecta) and four Rhodophyta species (Gracilaria eucheumatoides, Gracilaria salicornia, Kappaphycus alvarezii, and Kappaphycus striatum) with enzyme-treated rabbit and sheep erythrocytes. The hemagglutinins of seven Chlorophyta and eight Rhodophyta species were examined for sugar-binding specificity, pH- and temperature-stability, and divalent cation-independency of hemagglutination using ammonium sulfate-precipitates prepared from their extracts. In a hemagglutination-inhibition test with various monosaccharides and glycoproteins, none of the hemagglutinins had affinity for monosaccharides, except the Codium arabicum and Gracilaria euchematoides hemagglutinins, whose activities were inhibited by both N-acetyl-d-galactosamine and N-acetyl-d-glucosamine. On the other hand, all of the hemagglutinins activities were inhibited by some glycoproteins. The inhibition profiles with glycoproteins were different depending on hemagglutinin species, and suggest the presence of lectins specific for high mannose N-glycans, complex N-glycans, or O-glycans. The activities of these algal hemagglutinins were stable over a wide range of pH and temperature, and independent of the presence of divalent cations. These results indicate that Vietnamese marine algae are a good source of novel and useful lectins.  相似文献   

3.
The Cyanidiophyceae members (PreRhodophyta) may serve as a transitional algal group bridging the cyanobacteria and the unicellular Rhodophyta. This thermoacidic algal group is composed of three genera containing several species. We suggested placing these algae in progressively evolutionary steps: (Cyanidioschyzon Cyanidium Galdieria). This evolutional ladder is based upon various areas of research like biochemistry, amount of nuclear genome and shape of chloroplast nucleoid, ultrastructure and ecological aspects. The first alga —Cyanidioschyzon — is the cornerstone of this succession; it shows mixed features between cyanobacterium and archaebacteria(Thermoplasma-like cell). It demonstrates simple eukaryotic cellular features and has the smallest amount of nuclear and chloroplast DNA. The intermediate alga in this line,Cyanidium, is also a simple cell, but shows more progressive characterizations than theCyanidioschyzon. The third taxon,Galdieria, is already very close to the unicellular rhodophytes (red algae) and indicates typical advanced eukaryotic characterization. We propose thatCyanidioschyzon (considered to be the simplest eukaryote) may have evolved from an association betweenThermoplasma-like archaebacterium and a thermophilic cyanobacterium. Autogenous (non-symbiotic) compartmental steps may have taken place fromCyanidioschyzon toCyanidium and then toGaldieria, and from this alga (group) towards the other unicellular red algae.Dedicated toDr. Jerome F. Fredrick, an enthusiast of our favorite algaCyanidium, on his retirement from directorship of Dodge Chemical Laboratories in Bronx, NYC.  相似文献   

4.
Apophlaea lyallii Hooker f. et Harvey and A. sinclairii Harvey in Hooker et Harvey, endemic Rhodophyta from New Zealand, were found to harbor a systemic fungus, Mycosphaerella apophlaeae Kohlmeyer. The algae occur on rocks in the upper intertidal zone and are resistant to desiccation and insolation. These suspected symbiotic associations which are similar to, but different from, lichens, are considered mycophycobioses. This is the first report of a supposed mycophycobiosis in members of the Rhodophyta.  相似文献   

5.
Filamentous green algae Chaetophorales present numerous taxonomic problems as many other green algae. Phylogenetic analyses based on nuclear genes have limited solutions. Studies with appropriate chloroplast molecular markers may solve this problems; however, suitable molecular markers for the order Chaetophorales are still unknown. In this study, 50 chloroplast genomes of Chlorophyceae, including 15 of Chaetophorales, were subjected to single protein-coding gene phylogenetic analyses, and substitution rate and evolutionary rate assays, and PCR amplification verification was conducted to screen the suitable molecular markers. Phylogenetic analyses of three chloroplast representative genes (psaB, tufA, and rbcL) amplified from 124 strains of Chaetophorales showed that phylogenetic relationships were not improved by increasing the number of samples, implying that the genes themselves, rather than limited samples, were the reason for the unsupported Topology I. Seven genes (atpF, atpI, ccsA, cemA, chlB, psbB, and rpl2) with robust support were selected to be the most suitable molecular markers for phylogenetic analyses of Chaetophorales, and the concatenated seven genes could replace the time-consuming and labor-intensive phylogenetic analyses based on chloroplast genome to some extent. To further solve the taxonomic problems of Chaetophorales, suitable chloroplast markers combined with more taxon-rich approach could be helpful and efficient.  相似文献   

6.
Chironomid larvae incorporate pieces of freshwater red algae into their cases from a wide geographic range in North America, extending from southern Canada to central Mexico. The Rhodophyta used in this process represent two orders (Acrochaetiales and Batrachospermales), five genera (Audouinella, Batrachospermum, Lemanea, Paralemanea, and Sirodotia), and 14 species from 21 locations. Three genera from the chironomid subfamily Orthocladiinae make these cases: Cardiocladius, Eukiefferiella, and Orthocladius. The Eukiefferiella claripennis group was the most frequently observed infrageneric taxon using red algae in its cases. The cases were tubular in shape with longitudinally oriented strips of algae held together by silken threads. Some of the cases constructed with Batrachospermum and Sirodotia also had several lateral branches of the alga radiating from the tube.  相似文献   

7.
8.
Prasinophytes form a paraphyletic assemblage of early diverging green algae, which have the potential to reveal the traits of the last common ancestor of the main two green lineages: (i) chlorophyte algae and (ii) streptophyte algae. Understanding the genetic composition of prasinophyte algae is fundamental to understanding the diversification and evolutionary processes that may have occurred in both green lineages. In this study, we sequenced the chloroplast genome of Pyramimonas parkeae NIES254 and compared it with that of P. parkeae CCMP726, the only other fully sequenced P. parkeae chloroplast genome. The results revealed that P. parkeae chloroplast genomes are surprisingly variable. The chloroplast genome of NIES254 was larger than that of CCMP726 by 3,204 bp, the NIES254 large single copy was 288 bp longer, the small single copy was 5,088 bp longer, and the IR was 1,086 bp shorter than that of CCMP726. Similarity values of the two strains were almost zero in four large hot spot regions. Finally, the strains differed in copy number for three protein‐coding genes: ycf20, psaC, and ndhE. Phylogenetic analyses using 16S and 18S rDNA and rbcL sequences resolved a clade consisting of these two P. parkeae strains and a clade consisting of these plus other Pyramimonas isolates. These results are consistent with past studies indicating that prasinophyte chloroplast genomes display a higher level of variation than is commonly found among land plants. Consequently, prasinophyte chloroplast genomes may be less useful for inferring the early history of Viridiplantae than has been the case for land plant diversification.  相似文献   

9.
Isolation of protoplasts from edible seaweeds   总被引:10,自引:0,他引:10  
Protoplasts were isolated enzymatically from three species of Chlorophyta (Enteromorpha linza, Monostroma zostericola andUlva pertusa) with high yield and viability. An enzyme solution appropriate for protoplast isolation from the marine green algae was the following: 2% Cellulase Onozuka R-10, 1.0.M mannitol, pH 6.0. Protoplasts could not be obtained from members of Phaeophyta or Rhodophyta.  相似文献   

10.
SYNOPSIS. Observations were made on the fine structure of Paramecium bursaria and its intracellular Chlorella symbionts. Emphasis was placed on the structure of the algae and structural aspects of the relationship between the organisms. The algae are surrounded by a prominent cell wall and contain a cup-shaped chloroplast which lies just beneath the plasma membrane. Within the cavity formed by the chloroplast are a large nucleus, a mitochondrion, one or more dictyosomes, and numerous ribosomes. The chloroplast itself is made up of a series of lamellar stacks each containing 2–6 or more thylakoids with a granular stroma and starch grains intercalated between the stacks. The thylakoid stacks of mature algae are frequently more compact than those of recently divided algae. A large pyrenoid is located within the base of the chloroplast. It is made up of a granular or fibrillar matrix surrounded by a shell of starch. The matrix is bisected by a stack of 2 thylakoids. Prior to the division of the chloroplast the pyrenoid regresses; pyrenoids subsequently form in the daughter chloroplasts thru condensation of the matrix material and the reappearance of a starch shell. This shell appears to be formed by the hollowing-out of starch grains already present in the chloroplast stroma. Accordingly, in this case, starch moves from the stroma to the pyrenoid. The algae are located thruout the peripheral cytoplasm of the Paramecium. Each alga is located in an individual vacuole except immediately following division of the algae when the daughter cells are temporarily located in the vacuole which harbored the parental cell. Shortly thereafter the vacuole membrane invaginates, thereby isolating the daughter algae into individual vacuoles. Degenerating symbiotic algae are seen; because these are frequently found in vacuoles with bacteria, they are presumed to be undergoing digestion. Due to the conditions of culture these algae could have been either of intracellular or extracellular origin.  相似文献   

11.
The composition and structure of the epibiotic flora of the Japanese scallop Mizuhopecten yessoensis were studied on the basis of data from long-term (1979 to 2007) observations on the scallop beds in Peter the Great Bay (Sea of Japan). In all, 52 species of macroalgae belonging to three phyla were found on the scallop shells; 3 species were new records for the benthic flora of the area studied. Red algae constituted the bulk of the species richness of algal epibionts; brown algae were represented by the lowest number of species. Species of Chlorophyta predominated in terms of biomass; species of Rhodophyta were found in lower numbers. The main form of the thallus of epibiotic algae was bushy or filamentous. The ratio of common to rare species was 30 : 70. As compared to the benthic flora, the epibiotic flora on the scallop shells was characterized by a greater number of warm-water species.  相似文献   

12.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   

13.
Three species of sea urchins, Echinometra lucunter, Lytechinus variegatus, and Arbacia lixula, common on the southeastern coast of Brazil, were selected for experiments on seaweed survival after passage through their digestive tract. L. variegatus and E. lucunter have more than 80% of their diet composed of algae. C. 24% of the species of algae present in the digestive tract survived. A. lixula has only 29% of its diet composed by algae, but the survival rate of the algae is c. 50%.Although Rhodophyta represent 51% of the ingested algae, their survival rate in the faeces is only 19%, while the Chlorophyta, with a survival rate of 63%, comprise only about 26% of the diet. Most species of algae that survived ingestion were r-strategists.  相似文献   

14.

Background  

Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae.  相似文献   

15.
A novel unicellular red alga collected from a mangrove area on Iriomote Island in southwest Japan is described as Bulboplastis apyrenoidosa gen. et sp. nov. The cells are spherical, mean 11.2 µm in diameter, and surrounded by a thick mucilaginous sheath. The grayish‐green chloroplast has many lobes extending throughout the cell and lacks a pyrenoid. This chloroplast type is similar to Glaucosphaera vacuolata, but differs from other unicellular red algae. Plastoglobuli clusters occur beneath the chloroplast envelope but only at the cell periphery. A peripheral encircling thylakoid is absent. Golgi bodies surround the central nucleus, which is an arrangement shared with all members of the Dixoniellales. The subcellular features of some mitotic phases are quite similar to those of other unicellular red algae. A pair of ring‐shaped structures located within electron‐dense material can be seen in cells undergoing telophase. The size of the polar rings ranged within those reported from the Dixoniellales. A phylogenetic analysis based on small subunit rDNA indicates that B. apyrenoidosa is a member of the Dixoniellales and a sister lineage to Neorhodellaand Dixoniella.  相似文献   

16.

Background  

The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum.  相似文献   

17.
The Klebsormidiophyceae are a class of green microalgae observed globally in both freshwater and terrestrial habitats. Morphology-based classification schemes of this class have been shown to be inadequate due to the simple morphology of these algae, the tendency of morphology to vary in culture versus field conditions, and rampant morphological homoplasy. Molecular studies revealing cryptic diversity have renewed interest in this group. We sequenced the complete chloroplast genomes of a broad series of taxa spanning the known taxonomic breadth of this class. We also sequenced the chloroplast genomes of three strains of Streptofilum, a recently discovered green algal lineage with close affinity to the Klebsormidiophyceae. Our results affirm the previously hypothesized polyphyly of the genus Klebsormidium as well as the polyphyly of the nominal species in this genus, K. flaccidum. Furthermore, plastome sequences strongly support the status of Streptofilum as a distinct, early-diverging lineage of charophytic algae sister to a clade comprising Klebsormidiophyceae plus Phragmoplastophyta. We also uncovered major structural alterations in the chloroplast genomes of species in Klebsormidium that have broad implications regarding the underlying mechanisms of chloroplast genome evolution.  相似文献   

18.
As the closest relatives of embryophytes, the charophycean green algae (sensu Mattox and Stewart) may reveal the evolutionary history of characters in this lineage. Recent molecular phylogenetic analysis indicates that the little‐known species Entransia fimbriata Hughes is a member of the charophycean order Klebsormidiales. In this study LM and EM were used to identify and describe additional structural characters of Entransia so that comparisons could be made with Klebsormidium and with other charophycean algae outside the order Klebsormidiales. Features that Entransia shares with various members of the genus Klebsormidium include cylindrical cells in unbranched filaments that may spiral, parietal chloroplasts that cover only part of the circumference of the cell, H‐shaped cross walls, and vegetative reproduction by both fragmentation and formation of zoospores or aplanospores. Among the characteristics that distinguish Entransia from Klebsormidium are a highly lobed chloroplast with multiple pyrenoids; a single large vacuole; short cells that die and collapse, apparently facilitating filament fragmentation; and germinating filaments with condensed adhesive at the base and a tapering spine at the tip. Although Entransia has sometimes been tentatively considered to be a member of the Zygnemataceae, the presence of a flagellate life history stage distinguishes Entransia from this group. The pyrenoids of Entransia are typical of those of charophycean algae in having traversing membranes and surrounding starch. Presence of multiple such pyrenoids in each chloroplast of Entransia supports the hypothesis that the common ancestor of charophycean algae and embryophytes had a single chloroplast with multiple pyrenoids.  相似文献   

19.
20.
Dawes , Clinton J., Flora M. Scott , and E. Bowler . (U. California, Los Angeles.) A light- and electron-microscopic survey of algal cell walls. I. Phaeophyta and Rhodophyta. Amer. Jour. Bot. 48(10): 925–934. Illus. 1961.—An introductory survey of the structure of the cell walls of brown, red, and green algae, as seen under light and electron microscopes, has been completed. In the present paper (Part I) the structure of the thalli of the Phaeophyta and Rhodophyta is compared, and the occurrence of intercellular spaces, pitting, and microfibrillar patterns is discussed. A detailed comparison of the cell-wall structure and growth of a brown alga, Dictyota flabellata, and of a red alga, Helminthocladia californica, is also presented. In Dictyota, typical of the brown algae, the microfibrillar pattern in the apical cells and in the adjacent cells of the thallus tip is reticulate. In mature cells, the microfibrils are dominantly parallel in orientation. Pits, which are fields of closely set pores, are distinctive. The microfibrils in the pit areas are masked by non-fibrillar material. Helminthocladia, with a cell wall characteristic of the red algae, differs from Dictyota in that the microfibrillar pattern is reticulate at all ages of the cell and throughout the thallus. In the pit areas, the microfibrils are not masked by amorphous material. Pit connections, characteristic of the Florideae, can be divided into 2 major groups. Either the pit connection is an open channel between 2 adjacent cells, or it is composed of numerous plasmodesmata traversing a continuous, loose, microfibrillar wall. The techniques of the survey are emphasized in that fragmented cell walls were studied, and, also, chemically cleared material was constantly compared with fresh material under light and electron microscopes. It is concluded that the cell wall, as a taxonomic character, is of value only in delimiting the Phaeophyta and Rhodophyta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号