首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell division in log-phase cultures of the unicellular, biflagellate alga, Chlamydomonas reinhardi, has been studied with the electron microscope. The two basal bodies of the cell replicate prior to cytokinesis; stages in basal body formation are presented. At the time of cell division, the original basal bodies detach from the flagella, and the four basal bodies appear to be involved in the orientation of the plane of the cleavage furrow. Four sets of microtubules participate in cell division. Spindle microtubules are involved in a mitosis that is marked by the presence of an intact nuclear envelope. A band of microtubules arcs over the mitotic nucleus, indicating the future cleavage plane. A third set of microtubules appears between the daughter nuclei at telophase, and microtubules comprising the "cleavage apparatus" radiate from the basal bodies and extend along both sides of the cleavage furrow during cytokinesis. Features of cell division in C. reinhardi are discussed and related to cell division in other organisms. It is proposed that microtubules participate in the formation of the cleavage furrow in C. reinhardi.  相似文献   

2.
The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide. Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei. Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules. No other microtubules are associated with the furrow. Characteristics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae.  相似文献   

3.
A detailed ultrastructure study was made of cell division and colony development in Eudorina elegans Ehrenberg. At the onset of cell division and prior to nuclear division the nucleus moved from the cell center to the cell surface. During nuclear division the nuclear membrane remained intact, except for openings occurring at the nuclear poles. The spindle microtubules appeared to arise from a MTOC-like (microtubule organizing centers) structure, while centrioles were absent from the nuclear poles. Following telophase, daughter nuclei formed which were separated by several distinct bands of endoplasmic reticulum. Cytokinesis occurred with formation of a cleavage furrow, associated with a typical phycoplast band of microtubules. However, cytokinesis was incomplete, resulting in formation of cytoplasmic bridges between the plakeal cells. Upon completion of up to five successive cell divisions, the plakea underwent inversion, which appeared to involve the production of colonial envelope material and rearrangement of cytoplasmic bridges. A new hypothesis concerning inversion is postulated based on these observations.  相似文献   

4.
It has been suggested that the organization of microtubules during mitosis plays an important role in cytokinesis in animal cells. We studied the organization of microtubules during the first cleavage and its role in cytokinesis of Xenopus eggs. First, we examined the immunofluorescent localization of microtubules in Xenopus eggs at various stages during the first cleavage. The astral microtubules that extend from each of the two centrosomes towards the division plane meet and connect with each other at the division plane as cytokinesis proceeds. The microtubular connection thus advances from the animal pole to the vegetal pole, and its leading edge is located approximately beneath the leading edge of the cleavage furrow. Furthermore, an experiment using nocodazole suggests that microtubules have an essential role in advancement of the cleavage furrow, but neither in contraction nor maintenance of the already formed contractile ring which underlies the cleavage furrow membrane. These results suggest that the astral microtubules play an important role in controlling the formation of the contractile ring in Xenopus eggs.  相似文献   

5.
This study provides data on cell division in Coleochaete orbicularis, an important taxon in evolutionary theories deriving land plants from green algae. Vegetative growth in discoid species of Coleochaete results from marginal cell division in two planes—radial and circumferential. Like many algae and certain of the simple land plants, Coleochaete is monoplastidic. Prior to mitosis, the single plastid migrates to a position where it will divide and be distributed into the daughter cells. Unlike monoplastidic cell division in hornworts, mosses, and lycopsids; microtubule nucleation is not intimately associated with the plastids. Instead, microtubule organization is associated with centriolar centrosomes throughout the cell cycle, as is common in algae. The cytokinetic apparatus lacks preprophase bands of microtubules, but includes typical phragmoplasts consisting of brushlike arrays of microtubules on either side of a dark zone. However, the origin and role of phragmoplasts is unusual. Phragmoplasts appear to develop among microtubules that emanate from the polar centrosomes rather than from nuclear envelopes and/or plastids. The function of phragmoplasts in Coleochaete is unclear, as the process of cytokinesis is not strictly centrifugal. Some infurrowing occurs in radial division, and cytokinesis appears to be entirely centripetal by infurrowing in circumferential division. The cortical arrays of microtubules differ from those typical of land plants in that they develop as a network in association with centrosomes after mitosis.  相似文献   

6.
Pseudendoclonium basiliense and Trichosarcina polymorpha are essentially identical with regard to the fine structural details of cell division even though one was previously classified in the Chaetophorales and the other in the Ulvales. Cell division in the 2 genera is also shown to be like that in Ulva, as previously suggested might be the case. The combination of mitotic and cytokinetic characteristics common to the 3 genera is distinctive: (1) precocious development of a thick cleavage furrow, (2) centrioles distinctly lateral to polar fenestrae, (3) collapse of the interzonal spindle at telophase, and. (4) a cleavage furrow not associated with microtubules. It is suggested that features of vegetative cell division presently provide the best, characteristics for defining the Ulvaceae and that the use of growth habit should be abandoned. Despite the fact that a phycoplast is not present, in these algae, it is concluded that their affinities lie with genera that do possess a phycoplast.  相似文献   

7.
This correlated immunofluorescence and electron microscope study reveals that the microtubule arrays during meiosis in Timmiella barbuloides mirror those in other mosses but the organization of the metaphase I spindle is quite different. In other mosses the sagittiform metaphase I spindle initially contains four bands of microtubules derived from the tetrahedral system present at prophase. These bands converge towards the division axis and each half spindle contains two focal points of microtubules straddling a cleavage furrow. In Timmiella the sagittiform spindle also contains four microtubular foci derived from the preprophasic tetrahedron. However, one of these contributes to one half spindle, the other half deriving from the three remaining foci orientated at approximately 120° to each other. In contrast to other mosses the sporocytes in Timmiella are hardly lobed, the cleavage-furrows ill-defined, the prophasic plastid positioning in the lobes is also more variable and the organelle band in meiocytes comprises mitochondria alone.  相似文献   

8.
Except for the lack of a centriole, interphase cell morphology and cell division in Stichococcus is similar to that in Klebsormidium. The cell in Stichococcus is largely filled by a chloroplast and pyrenoid, at the side of which are two mitochondria and one small peroxisome. The chloroplast/pyrenoid cleaves early in prophase, probably completely, and the nucleus is inserted between the two halves. A band of 3–5 microtubules always encircles the prophase nucleus; these disappear by metaphase. The spindle is open, the daughter nuclei remain far apart at telophase and during cytokinesis, and vacuoles collect between them; no phycoplast is associated with the cleavage furrow.

These results indicate a close phyletic relationship between Stichococcus and Klebsormidium, two organisms which are now considered to be more closely related to the progenitors of the higher land plants than most of the other members of the Ulotrichales.  相似文献   

9.
Summary At concentrations that did not affect growth, hydroxyurea and 21-deoxyadenosine inhibited DNA synthesis inChlamydomonas. Evidence that initiation of mitosis is dependent upon completion of DNA replication was provided by the arrest of inhibited cells with undivided nuclei containing undispersed nucleoli. Initiation of cytokinesis is not dependent upon progress of nuclear division since, in arrested cells, cleavage microtubules became deployed in a phycoplast and a cleavage furrow developed fully, until obstructed by the undivided nucleus. Chloroplast constriction and division also continued independently of nuclear division. It is concluded that nuclear division, cytoplasmic cleavage and chloroplast division are in separate sequences of dependent events. This is supported by flexibility of their relative timing in successive divisions, since after the first commitment to divide nuclear division is followed by initiation of cleavage and then chloroplast division, whereas following subsequent commitments these events occur in reverse time order. This flexibility of order indicates changing rates of progress through separate sequences of events.Deposition of wall material was dependent upon the completion of cytokinesis, but this inhibition of wall deposition by incomplete cytokinesis did not extend to other daughters within the same mother cell.These observations are correlated with our earlier data concerning the rate-limiting control points for division and a model for the coordination of division events is presented. The relationships between different plant cell cycles is discussed in view of the findings presented.  相似文献   

10.
Microtubule arrays associated with simultaneous cytokinesis in the coenocytic microsporocytes of Lonicera japonica and Impatiens sultani were studied by indirect immunofluorescence. The future division planes are not predicted prior to meiosis by either a preprophase band of microtubules or cytoplasmic lobing. Cleavage planes appear to be determined by position of the four haploid nuclei and the development of postmeiotic microtubule systems. Perpendicular second division spindles in Lonicera result in tetrahedrally arranged tetrads while parallel spindles in Impatiens result in tetragonal arrangement. Immediately following meiosis bands of microtubules, the secondary spindles, develop between both sister and nonsister nuclei. These arrays give way to systems of microtubules that radiate equally from each of the four nuclei in the coenocytic sporocyte. Simultaneous cytokinesis is initiated by centripetal wall deposition at the periphery of the sporocyte and proceeds along planes marked by interaction of the opposing arrays of nuclear-based microtubules.  相似文献   

11.
K. Katoh  H. Ishikawa 《Protoplasma》1989,150(2-3):83-95
Summary The distribution and arrangement of cytoskeletal components in the early embryo ofDrosophila melanogaster were examined by thin-section electron microscopy to elucidate their involvement in the formation of the cellular blastoderm, a process called cellularization. During the final nuclear division in the cortex of the syncytial blastoderm bundles of astral microtubules were closely associated with the surface plasma membrane along the midline where a new gutter was initiated. Thus the new gutter together with the pre-formed ones compartmentalized the embryo surface to reflect underlying individual daughter nuclei. Subsequently such gutters became deeper by further invagination of the plasma membrane between adjacent nuclei to form so-called cleavage furrows. Nuclei simultaneously elongated in the direction perpendicular to the embryo surface and numerous microtubules from the centrosomes ran longitudinally between the nucleus and the cleavage furrow. Microtubules often appeared to be in close association with the nuclear envelope and the cleavage furrow membrane. The plasma membrane at the advancing tip of the furrow was always undercoated with an electron-dense layer, which could be shown to be mainly composed of 5–6 nm microfilaments. These microfilaments were decorated with H-meromyosin to be identified as actin filaments. As cleavage proceeded, each nucleus with its perikaryon became demarcated by the furrow membrane, which then extended laterally to constrict the cytoplasmic connection between each newly forming cell and the central yolk region. The cytoplasmic strand thus formed possessed a prominent circular bundle of microfilaments which were also decorated with H-meromyosin and bidirectionally arranged, similar in structure to the contractile ring in cytokinesis. These observations strongly suggest that both microtubules and actin filaments play a crucial role in cellularization ofDrosophila embryos.  相似文献   

12.
Pre-prophase bands of microtubules were found in every category of cell division, symmetrical and asymmetrical, in the cell lineages of the root apex of Azolla pinnata R.Br. and A. filiculoides Lam., and in the transverse divisions in the cell files of the roots. They are also found in the asymmetrical cell division that gives rise to trichoblasts in roots of Hydrocharis dubia (B1). Backer. It is possible, in a variety of cell types in roots of Azolla, to predict within a fraction of a micrometre where a new cell wall will be located. In every such case the midline of the 1.5–3-m-wide pre-prophase band anticipates this location. Each of the daughter cells thus inherits approximately half of the former pre-prophase band site. Images interpreted as stages of formation of the band were obtained, its microtubules replacing the interphase cortical arrays. In one highly asymmetrical division, band formation precedes migration of the nucleus to the site of mitosis. The asymmetrical division that gives rise to root hairs passes acropetally along every cell in the dermatogen layer, and preprophase bands were seen up to 8 cells in advance of the last completed division. Here, and in the zone of formative divisions, the band is present for much longer than the duration of mitosis. The ubiquity of the band in the Azolla root tip is discussed in relation to the literature, and a working hypothesis is presented that takes into account current knowledge of occurrence, development and function of the band.  相似文献   

13.
Ann L. Cleary 《Protoplasma》2001,215(1-4):21-34
Summary Tradescantia virginiana leaf epidermal cells were plasmolysed by sequential treatment with 0.8 M and 0.3 M sucrose. Plasmolysis revealed adhesion of the plasma membrane to the cell wall at sites coinciding with cytoskeletal arrays involved in the polarisation of cells undergoing asymmetric divisions — cortical actin patch — and in the establishment and maintenance of the division site —preprophase band of microtubules and filamentous (F) actin. The majority of cells retained adhesions at the actin patch throughout mitosis. However, only approximately 13% of cells formed or retained attachments at the site of the preprophase band. After the breakdown of the nuclear envelope, plasmolysis had a dramatic effect on spindle orientation, cell plate formation, and the plane of cytokinesis. Spindles were rotated at abnormal angles including tilted into the plane of the epidermis. Cell plates formed but were quickly replaced by vacuole-like intercellular compartments containing no Tinopal-stainable cell wall material. This compartment usually opened to the apoplast at one side, and cytokinesis was completed by the furrow extending across the protoplast. This atypical cytokinesis was facilitated by a phragmoplast containing microtubules and F-actin. Progression of the furrow was unaffected by 25 g of cytochalasin B per ml but inhibited by 10 M oryzalin. Phragmoplasts were contorted and misguided and cytokinesis prolonged, indicating severe disruption to the guidance mechanisms controlling phragmoplast expansion. These results are discussed in terms of cytoskeleton-plasma membrane-cell wall connections that could be important to the localisation of plasma membrane molecules defining the cortical division site and hence providing positional information to the cytokinetic apparatus, and/or for providing an anchor for cytoplasmic F-actin necessary to generate tension on the phragmoplast and facilitate its directed, planar expansion.Abbreviations ADZ actin-depleted zone - DIC differential interference contrast - GMC guard mother cell - MT microtubule - PPB preprophase band - SMC subsidiary mother cell Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

14.
The ultrastructural aspects of the cell division in the grapevine(Vitis riparia × V.labrusca) calli were studied. A large central vacuole plays a noticeable part in this process. Before its division the nucleus with some encircling cytosol moves into the central vacuole where the small, round-shaped portion of cytosol (phragmosome) originates. In this central mass of cytosol connected with the peripheral one by thin cytosolic strands karyokinesis is carried out and the cell plate formation starts. Before karyokinesis the phragmosome, however, does not exhibit the form of the cytosolic layer completely traversing the cell. No preprophase band of microtubules has been observed in the cells either. The polarity of the mitotic spindle designating the orientation of the new cell wall is random then and it is not determined by the position of the preprophase band of microtubules or by the orientation of phragmosome. The unorganized growth of the grapevine callus reflects this fact.  相似文献   

15.
The regulation of mitosis in higher plant cells has been investigated by microinjecting protein kinase from the metaphase-arresting (met1) mutant ofChlamydomonas. Biochemical characterization of this enzyme complex confirms the presence of a p34cdc2/cyclin B-like kinase. The enzyme was injected into living stamen hair cells ofTradescantia virginianain which microtubules (MTs) were visualized using fluorescent analogue cytochemistry and confocal laser scanning microscopy. Microinjection of this p34cdc2/cyclin B-like kinase caused rapid disassembly of the preprophase band of MTs but not of interphase-cortical, spindle or phragmoplast MTs. Effects of the enzyme on the cytomorphology of live prophase cells were also monitored using video microscopy. We found that injection of this enzyme accelerated chromatin condensation and nuclear envelope breakdown. This indicates the presence and function in plants of an enzyme that can initiate nuclear division similar to the maturation or mitosis promoting factor (MPF) of animal cells. These studies provide the first direct evidence that the mitotically-active form of plant MPF can drive disassembly of preprophase band MTs, chromosome condensation and initiation of mitosis in plant cells.  相似文献   

16.
L. L. Ehler  J. A. Holmes    S. K. Dutcher 《Genetics》1995,141(3):945-960
The bld2-1 mutation in the green alga Chlamydomonas reinhardtii is the only known mutation that results in the loss of centrioles/basal bodies and the loss of coordination between spindle position and cleavage furrow position during cell division. Based on several different assays, bld2-1 cells lack basal bodies in >99% of cells. The stereotypical cytoskeletal morphology and precise positioning of the cleavage furrow observed in wild-type cells is disrupted in bld2-1 cells. The positions of the mitotic spindle and of the cleavage furrow are not correlated with respect to each other or with a specific cellular landmark during cell division in bld2-1 cells. Actin has a variable distribution during mitosis in bld2-1 cells, but this aberrant distribution is not correlated with the spindle positioning defect. In both wild-type and bld2-1 cells, the position of the cleavage furrow is coincident with a specialized set of microtubules found in green algae known as the rootlet microtubules. We propose that the rootlet microtubules perform the functions of astral microtubules and that functional centrioles are necessary for the organization of the cytoskeletal superstructure critical for correct spindle and cleavage furrow placement in Chlamydomonas.  相似文献   

17.
18.
Tetrahymena contains a micronucleus and a macronucleus. The micronucleus divides with typical mitosis, while the macronucleus divides amitotically. Although the mechanism responsible for macronuclear division was previously unknown, we clarified the organization of microtubules during macronuclear division. The macronuclear microtubules dynamically changed their distribution in an organized way throughout the macronuclear division. The macronuclear microtubules and the cytoplasmic microtubules cooperatively carried out the macronuclear division. When the micronuclear division was finished, p85 appeared at the presumptive division plane prior to the cytokinesis. The p85 directly interacted with calmodulin in a Ca(2+)-dependent manner, and p85 and CaM colocalized to the division furrow during cytokinesis. Moreover, the Ca(2+)/CaM inhibitor, W7, inhibited the direct interaction between p85 and CaM, the localization of both proteins to the division plane, and the formation of the division furrow. Thus, Ca(2+)/CaM and p85 have important roles in initiation and progression of cytokinesis in Tetrahymena.  相似文献   

19.
The cyanelles of glaucocystophytes are probably the most primitive of known extant plastids and the closest to cyanobacteria. Their kidney shape and FtsZ arc during the early stage of division define cyanelle division. In order to deepen and expand earlier results (Planta 227:177–187, 2007), cells of Cyanophora paradoxa were fixed with two different chemical and two different freeze-fixation methods. In addition, cyanelles from C. paradoxa were isolated to observe the surface structure of dividing cyanelles using field emission scanning electron microscopy (FE-SEM). A shallow furrow started on one side of the division plane. The furrow subsequently extended, covering the entire division circle, and then invaginated deeply, becoming clearly visible. The typical FtsZ arc was 2.3–3.4 μm long. This length matches that of the cleavage furrow observed using FE-SEM. The cyanelle cleavage furrows are from one-fourth to one-half of the circumference of the division plane. The shallow furrow that appears on the cyanelle outer surface effectively changes the division plane. Using freeze-fixation methods, the electron-dense stroma and peptidoglycan could be distinguished. In addition, an electron-dense belt structure (the cyanelle ring) was observed inside the leading edge at the cyanelle division plane. The FtsZ arc is located at the division plane ahead of the cyanelle ring. Immunogold-TEM localization shows that FtsZ is located interiorly of the cyanelle ring. The lack of an outer PD ring, together with the arch-shaped furrow, suggests that the mechanical force of the initial (arch shaped) septum furrow constriction comes from inside the cyanelle.  相似文献   

20.
Summary The organization of the microtubule cytoskeleton in the generative cell ofConvallaria majalis has been studied during migration of the cell through the pollen tube and its division into the two sperm cells. Analysis by conventional or confocal laser scanning microscopy after tubulin staining was used to investigate changes of the microtubule cytoskeleton during generative-cell migration and division in the pollen tube. Staining of DNA with 4,6-diamidino-2-phenylindole was used to correlate the rearrangement of microtubules with nuclear division during sperm cell formation. Before pollen germination the generative cell is spindle-shaped, with microtubules organized in bundles and distributed in the cell cortex to form a basketlike structure beneath the generative-cell plasma membrane. During generative-cell migration through the pollen tube, the organization of the microtubule bundles changes following nuclear division. A typical metaphase plate is not usually formed. The generative-cell division is characterized by the extension of microtubules concomitant with a significant cell elongation. After karyokinesis, microtubule bundles reorganize to form a phragmoplast between the two sperm nuclei. The microtubule organization during generative-cell division inConvallaria majalis shows some similarities but also differences to that in other members of the Liliaceae.Abbreviations CLSM confocal laser scanning microscopy - EM electron microscopy - GC generative cell - GN generative nucleus - MT microtubule - SC sperm cell - SN sperm nucleus - VN vegetative nucleus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号