首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
2.
In Drosophila, the replacement of spent enterocytes (ECs) relies on division of intestinal stem cells (ISCs) and differentiation of their progeny, the enteroblasts (EBs). Recent studies have revealed a role for JAK/STAT signaling in the modulation of the rate of ISC division in response to environmental challenge. Here, we demonstrate the critical role of the UPD3 cytokine in the JAK/STAT-dependent response to enteric infection. We show that upd3 expression is activated in ECs and in EBs that massively differentiate in response to challenge. We show that the UPD3 cytokine, which is secreted basally and accumulates at the basement membrane, is required for stimulation of JAK/STAT signaling in EBs and visceral muscles (VMs). We further show that stimulation of ISC division requires active JAK/STAT signaling in EBs and VMs, but apparently not in ISCs. Our results suggest that EBs and VMs modulate the rate of the EGFR-dependent ISC division through upd3-dependent production of the EGF ligands Spitz and Vein, respectively. This study therefore supports the notion that the production of the UPD3 cytokine in stem cell progeny (ECs and EBs) stimulates intestinal stem cell division through modulation of JAK/STAT signaling in the stem cell microenvironment (EBs and VMs).  相似文献   

3.
4.
Aiguo Tian 《Fly》2017,11(4):297-302
Many adult organs including Drosophila adult midguts rely on resident stem cells to replenish damaged cells during tissue homeostasis and regeneration. Previous studies have shown that, upon injury, intestinal stem cells (ISCs) in the midguts can increase proliferation and lineage differentiation to meet the demand for tissue repair. Our recent study has demonstrated that, in response to certain injury, midguts can expand ISC population size as an additional regenerative mechanism. We found that injury elicited by bleomycin feeding or bacterial infection increased the production of two BMP ligands (Dpp and Gbb) in enterocytes (ECs), leading to elevated BMP signaling in progenitor cells that drove an expansion of ISCs by promoting their symmetric self-renewing division. Interestingly, we also found that BMP signaling in ECs inhibits the production of Dpp and Gbb, and that this negative feedback mechanism is required to reset ISC pool size to the homeostatic state. Our findings suggest that BMP signaling exerts two opposing influences on stem cell activity depending on where it acts: BMP signaling in progenitor cells promotes ISC self-renewal while BMP signaling in ECs restricts ISC self-renewal by preventing excessive production of BMP ligands. Our results further suggest that transient expansion of ISC population in conjunction with increasing ISC proliferation provides a more effective strategy for tissue regeneration.  相似文献   

5.
During Drosophila optic lobe development, proliferation and differentiation must be tightly modulated to reach its normal size for proper functioning. The JAK/STAT pathway plays pleiotropic roles in Drosophila development and in the larval brain, has been shown to inhibit medulla neuroblast formation. In this study, we find that JAK/STAT activity is required for the maintenance and proliferation of the neuroepithelial stem cells in the optic lobe. In loss-of-function JAK/STAT mutant brains, the neuroepithelial cells lose epithelial cell characters and differentiate prematurely while ectopic activation of this pathway is sufficient to induce neuroepithelial overgrowth in the optic lobe. We further show that Notch signaling acts downstream of JAK/STAT to control the maintenance and growth of the optic lobe neuroepithelium. Thus, in addition to its role in suppression of neuroblast formation, the JAK/STAT pathway is necessary and sufficient for optic lobe neuroepithelial growth.  相似文献   

6.
BMP signaling and stem cell regulation   总被引:7,自引:0,他引:7  
Stem cells play an essential role in cellular specialization and pattern formation during embryogenesis and in tissue regeneration in adults. This is mainly due to a stem cell's ability to replenish itself (self-renewal) and, at the same time, produce differentiated progeny. Realization of these special stem cell features has changed the prospective of the field. However, regulation of stem cell self-renewal and maintenance of its potentiality require a complicated regulatory network of both extracellular cues and intrinsic programs. Understanding how signaling regulates stem cell behavior will shed light on the molecular mechanisms underlying stem cell self-renewal. In this review, we focus on comparing the progress of recent research regarding the roles of the BMP signaling pathway in different stem cell systems, including embryonic stem cells, germline stem cells, hematopoietic stem cells, and intestinal stem cells. We hope this comparison, together with a brief look at other signaling pathways, will bring a more balanced view of BMP signaling in regulation of stem cell properties, and further point to a general principle that self-renewal of stem cells may require a combination of maintenance of proliferation potential, inhibition of apoptosis, and blocking of differentiation.  相似文献   

7.
8.
Quiescent, multipotent gastric stem cells (GSSCs) in the copper cell region of adult Drosophila midgut can produce all epithelial cell lineages found in the region, including acid-secreting copper cells, interstitial cells and enteroendocrine cells, but mechanisms controlling their quiescence and the ternary lineage differentiation are unknown. By using cell ablation or damage-induced regeneration assays combined with cell lineage tracing and genetic analysis, here we demonstrate that Delta (Dl)-expressing cells in the copper cell region are the authentic GSSCs that can self-renew and continuously regenerate the gastric epithelium after a sustained damage. Lineage tracing analysis reveals that the committed GSSC daughter with activated Notch will invariably differentiate into either a copper cell or an interstitial cell, but not the enteroendocrine cell lineage, and loss-of-function and gain-of-function studies revealed that Notch signaling is both necessary and sufficient for copper cell/interstitial cell differentiation. We also demonstrate that elevated epidermal growth factor receptor (EGFR) signaling, which is achieved by the activation of ligand Vein from the surrounding muscle cells and ligand Spitz from progenitor cells, mediates the regenerative proliferation of GSSCs following damage. Taken together, we demonstrate that Dl is a specific marker for Drosophila GSSCs, whose cell cycle status is dependent on the levels of EGFR signaling activity, and the Notch signaling has a central role in controlling cell lineage differentiation from GSSCs by separating copper/interstitial cell lineage from enteroendocrine cell lineage.  相似文献   

9.
Due to the limited understanding of self-renewal and pluripotency related signaling in stem cells, extracting information from genome-wide expression data is not only important but also challenging. With the combined use of two methods, we analyzed a set of microarray data at 11 time points from three mouse embryonic stem cell lines cultivated with and without leukemia inhibitory factor (LIF) for 14 days. Albeit the expression of individual genes in signaling pathways was not noticeably different between cells cultivated with and without LIF, at gene-set level the expression of ERK/MAPK (but not JAK/STAT) and cell cycle related genes was found significantly enriched in cells cultivated with LIF. This indicates that the Ras/Raf/ERK pathway, in addition to JAK/STAT, may also be a key player to carry on external LIF signal into mouse embryonic stem cells to promote self-renewal. When data at the first 7 time points were compared with data at the last 4 time points, the expression of several cell cycle related gene sets was apparently enriched in all three cell lines, indicating the active cell proliferation in the first 2 days. Compared with the slight decay of Oct4/Nanog/Sox2 during the 14 days, the expression of cell differentiation genes such as Gata4/6 underwent a drastic increase, which indicates that the upregulated expression of cell differentiation genes may better reflect the loss of self renewal than the down regulated expression of the stemness indicators Oct4, Sox2 and Nanog. Apart from differential expression and gene set enrichment analyses, a clustering algorithm was also used to classify genes into co-expression clusters. The possible regulation of two clusters, whose expression was most changed during cell culture from very low to very high, was explored. The drastic changes of these genes, including Slc39a8 which was a potential indicator of cell differentiation, in contrast the slight changes of self-renewal genes, imply that differentiation may be the default fate of stem cells and self-renewal may rely on a maintenance mechanism. When that mechanism weakens, cell differentiation begins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Xu N  Wang SQ  Tan D  Gao Y  Lin G  Xi R 《Developmental biology》2011,354(1):2780-43
Tissue-specific adult stem cells are commonly associated with local niche for their maintenance and function. In the adult Drosophila midgut, the surrounding visceral muscle maintains intestinal stem cells (ISCs) by stimulating Wingless (Wg) and JAK/STAT pathway activities, whereas cytokine production in mature enterocytes also induces ISC division and epithelial regeneration, especially in response to stress. Here we show that EGFR/Ras/ERK signaling is another important participant in promoting ISC maintenance and division in healthy intestine. The EGFR ligand Vein is specifically expressed in muscle cells and is important for ISC maintenance and proliferation. Two additional EGFR ligands, Spitz and Keren, function redundantly as possible autocrine signals to promote ISC maintenance and proliferation. Notably, over-activated EGFR signaling could partially replace Wg or JAK/STAT signaling for ISC maintenance and division, and vice versa. Moreover, although disrupting any single one of the three signaling pathways shows mild and progressive ISC loss over time, simultaneous disruption of them all leads to rapid and complete ISC elimination. Taken together, our data suggest that Drosophila midgut ISCs are maintained cooperatively by multiple signaling pathway activities and reinforce the notion that visceral muscle is a critical component of the ISC niche.  相似文献   

11.
《遗传学报》2015,42(1)
Tissue homeostasis,accomplished through the self-renewal and differentiation of resident stem cells,is critical for the maintenance of adult tissues throughout an animal's lifetime.Adult Drosoplula Malpighian tubules(MTs or fly kidney) are maintained by renal and nephric stem cells(RNSCs) via self-renewing divisions,however,it is unclear how RNSC proliferation and differentiation are regulated.Here we show that EGFR/MAPK signaling is dispensable for RNSC maintenance,but required for RNSC proliferation in vivo.Inactivation of the EGFR/MAPK pathway blocks or greatly retards RNSC cell cycle progression:conversely,over-activation of EGFR/MAPK signaling results in RNSC over-proliferation and disrupts the normal differentiation of renablasts(RBs),the immediate daughters of RNSC divisions.Our data further suggest that EGFR/MAPK signaling functions independently of JAK/STAT signaling and that dMyc and CycE partially mediate EGFR/MAPK signaling in MTs.Together,our data suggest a principal role of EGFR/MAPK signaling in regulating RNSC proliferation,which may provide important clues for understanding mammalian kidney repair and regeneration following injury.  相似文献   

12.
Many adult tissues are maintained by resident stem cells that elevate their proliferation in response to injury. The regulatory mechanisms underlying regenerative proliferation are still poorly understood. Here we show that injury induces Hedgehog (Hh) signaling in enteroblasts (EBs) to promote intestinal stem cell (ISC) proliferation in Drosophila melanogaster adult midgut. Elevated Hh signaling by patched (ptc) mutations drove ISC proliferation noncell autonomously. Inhibition of Hh signaling in the ISC lineage compromised injury-induced ISC proliferation but had little if any effect on homeostatic proliferation. Hh signaling acted in EBs to regulate the production of Upd2, which activated the JAK–STAT pathway to promote ISC proliferation. Furthermore, we show that Hh signaling is stimulated by DSS through the JNK pathway and that inhibition of Hh signaling in EBs prevented DSS-stimulated ISC proliferation. Hence, our study uncovers a JNK–Hh–JAK–STAT signaling axis in the regulation of regenerative stem cell proliferation.  相似文献   

13.
14.
BMP signaling is essential for promoting self-renewal of mouse embryonic stem cells and Drosophila germline stem cells and for repressing stem cell proliferation in the mouse intestine and skin. However, it remains unknown whether BMP signaling can promote self-renewal of adult somatic stem cells. In this study, we show that BMP signaling is necessary and sufficient for promoting self-renewal and proliferation of somatic stem cells (SSCs) in the Drosophila ovary. BMP signaling is required in SSCs to directly control their maintenance and division, but is dispensable for proliferation of their differentiated progeny. Furthermore, BMP signaling is required to control SSC self-renewal, but not survival. Moreover, constitutive BMP signaling prolongs the SSC lifespan. Therefore, our study clearly demonstrates that BMP signaling directly promotes SSC self-renewal and proliferation in the Drosophila ovary. Our work further suggests that BMP signaling could promote self-renewal of adult stem cells in other systems.  相似文献   

15.
16.
17.
In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction pathways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduction pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regulation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.  相似文献   

18.
19.
20.
Embryonic stem cells are a unique cell population capable both of self-renewal and of differentiation into all tissues in the adult organism. Despite the central importance of these cells, little information is available regarding the intracellular signaling pathways that govern self-renewal or early steps in the differentiation program. Embryonic stem cell growth and differentiation correlates with kinase activities, but with the exception of the JAK/STAT3 pathway, the relevant substrates are unknown. To identify candidate phosphoproteins with potential relevance to embryonic stem cell differentiation, a systems biology approach was used. Proteins were purified using phosphoprotein affinity columns, then separated by two-dimensional gel electrophoresis, and detected by silver stain before being identified by tandem mass spectrometry. By comparing preparations from undifferentiated and differentiating mouse embryonic stem cells, a set of proteins was identified that exhibited altered post-translational modifications that correlated with differentiation state. Evidence for altered post-translational modification included altered gel mobility, altered recovery after affinity purification, and direct mass spectra evidence. Affymetrix microarray analysis indicated that gene expression levels of these same proteins had minimal variability over the same differentiation period. Bioinformatic annotations indicated that this set of proteins is enriched with chromatin remodeling, catabolic, and chaperone functions. This set of candidate phosphoprotein regulators of stem cell differentiation includes products of genes previously noted to be enriched in embryonic stem cells at the mRNA expression level as well as proteins not associated previously with stem cell differentiation status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号