首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

2.
3.
4.
Salivary glands are the ultimate site of development in the insect of mosquito born pathogens such as Plasmodium. Mosquito salivary glands also secrete components involved in anti-haemostatic activities and allergic reactions. We investigated the feasibility of RNAi as a tool for functional analysis of genes expressed in Anopheles gambiae salivary glands. We show that specific gene silencing in salivary glands requires the use of large amounts of dsRNA, condition that differs from those for efficient RNAi in other mosquito tissues. Using this protocol, we demonstrated the role of AgApy, which encodes an apyrase, in the probing behaviour of An. gambiae.  相似文献   

5.
We report here on the use of RNA interference (RNAi) to create pupal and adult loss-of-function phenotypes in the red flour beetle, Tribolium castaneum, by injection of double-stranded RNA (dsRNA) into late instar larvae (we refer to this method as larval RNAi). RNAi is well-established as a useful method to mimic loss-of-function phenotypes in many organisms including insects. However, with a few exceptions (such as in the fruit fly Drosophila melanogaster), RNAi analysis has usually been limited to studies of embryogenesis. Here we demonstrate that injection of green fluorescent protein (GFP) dsRNA into the larval body cavity can inhibit GFP expression beginning shortly after injection and continuing through pupal and adult stages. RNAi analysis of the Tc-achaete-scute-homolog (Tc-ASH) revealed that larval RNAi can induce morphological defects in adult beetles, and also that larval RNAi affects the entire body rather than being localized near the site of injection. The larval RNAi technique will be useful to analyze gene functions in post-embryonic development, giving us the opportunity to study the molecular basis of adult morphological diversity in various organisms.Edited by D. Tautz  相似文献   

6.
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone found in all species except for Archaea, which is required not only for stress tolerance but also for normal development. Recently, it was reported that HSP83, one member of the cytosolic HSP90 family, contributes to oogenesis and responds to heat resistance in Tribolium castaneum. Here, a novel ER-based HSP90 gene, Tchsp90, has been identified in T. castaneum. Phylogenetic analysis showed that hsp90s and hsp83s evolved separately from a common ancestor but that hsp90s originated earlier. Quantitative real-time polymerase chain reaction illustrated that Tchsp90 is expressed in all developmental stages and is highly expressed at early pupa and late adult stages. Tchsp90 was upregulated in response to heat stress but not to cold stress. Laval RNAi revealed that Tchsp90 is important for larval/pupal development. Meanwhile, parental RNAi indicated that it completely inhibited female fecundity and partially inhibited male fertility once Tchsp90 was knocked down and that it will further shorten the lifespan of T. castaneum. These results suggest that Tchsp90 is essential for development, lifespan, and reproduction in T. castaneum in addition to its response to heat stress.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-013-0487-y) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
9.
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.  相似文献   

10.
RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent–gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent–gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.  相似文献   

11.
This study was performed to characterize the genes that code for superoxide dismutase (SOD) in Leishmania aethiopica. It involved three main steps: specimen collection and parasite isolation, species identification, and molecular characterization of the SOD genes. Out of 20 skin slit specimens cultured and processed from suspected cutaneous leishmaniasis patients enrolled in the study, five (25%) were found to be positive for motile promastigotes. Isoenzyme electrophoresis and PCR-RFLP results confirmed that the isolates were L. aethiopica. Superoxide dismutase-B (SODB) genes were identified from L. aethiopica for the first time. Iron superoxide dismutase-B genes amplified from promastigotes of L. aethiopica (LaeFeSODB) were similar in size to the SODB genes of other Leishmania species. Nucleotide sequences of LaeFeSODB1 showed 95.4, 93.5, and 97.3% identity with L. donovani SODB1 (LdFeSODB1) L. major SODB1 (LmFeSODB1) and L. tropica SODB1 (LtrFeSODB1), respectively. Similarly, LaeFeSODB2 showed 95.9 and 94.1 and 97.6% identity with LdFeSODB2 and LmFeSODB2 and LtrFeSODB2, respectively. On the other hand, predicted amino acid sequence comparison indicated that LaeFeSODB1 had 91.3, 89.8, and 93.9% identity with LdFeSODB1, LmFeSODB1, and LtrFeSODB1, respectively. The difference in nucleic acid sequence of LaeFeSODB from that of LmFeSODB and LtrFeSODB can be utilized to develop specific molecular methods that help differentiate these species in places where there is an overlap in the distribution of these species. In addition, the data provide information about the situation of L. aethiopica with respect to SODB genes.  相似文献   

12.
The molecular basis of ecdysteroid function during development has been analyzed in detail in holometabolous insects, especially in Drosophila melanogaster, but rarely in hemimetabolous. Using the hemimetabolous species Blattella germanica (German cockroach) as model, we show that the ecdysone receptor isoform-A (BgEcR-A) mRNA is present throughout the penultimate and last nymphal instars in all tissues analyzed (prothoracic gland, epidermis and fat body). To study the functions of BgEcR-A, we reduced its expression using systemic RNAi in vivo, and we obtained knockdown specimens. Examination of these specimens indicated that BgEcR-A during the last nymphal instar is required for nymphal survival, and that reduced expression is associated with molting defects, lower circulating ecdysteroid levels and defects in cell proliferation in the follicular epithelium. Some BgEcR-A knockdown nymphs survive to the adult stage. The features of these specimens indicate that BgEcR-A is required for adult-specific developmental processes, such as wing development, prothoracic gland degeneration and normal choriogenesis.  相似文献   

13.
Although satellite DNAs are well-explored components of heterochromatin and centromeres, little is known about emergence, dispersal and possible impact of comparably structured tandem repeats (TRs) on the genome-wide scale. Our bioinformatics analysis of assembled Tribolium castaneum genome disclosed significant contribution of TRs in euchromatic chromosomal arms and clear predominance of satellite DNA-typical 170 bp monomers in arrays of ≥5 repeats. By applying different experimental approaches, we revealed that the nine most prominent TR families Cast1–Cast9 extracted from the assembly comprise ∼4.3% of the entire genome and reside almost exclusively in euchromatic regions. Among them, seven families that build ∼3.9% of the genome are based on ∼170 and ∼340 bp long monomers. Results of phylogenetic analyses of 2500 monomers originating from these families show high-sequence dynamics, evident by extensive exchanges between arrays on non-homologous chromosomes. In addition, our analysis shows that concerted evolution acts more efficiently on longer than on shorter arrays. Efficient genome-wide distribution of nine TR families implies the role of transposition only in expansion of the most dispersed family, and involvement of other mechanisms is anticipated. Despite similarities in sequence features, FISH experiments indicate high-level compartmentalization of centromeric and euchromatic tandem repeats.  相似文献   

14.
Information on the functional genomics of Caenorhabditis elegans has increased significantly in the last few years with the development of RNA interference. In parasitic nematodes, RNA interference has shown some success in gene knockdown but optimisation of this technique will be required before it can be adopted as a reliable functional genomics tool. Comparative studies in C. elegans remain an appropriate alternative for studying the function and regulation of some parasite genes and will be extremely useful for fully exploiting the increasing parasite genome sequence data becoming available.  相似文献   

15.
In hemimetabolous insects, the molecular basis of the 20-hydroxyecdysone (20E)-triggered genetic hierarchy is practically unknown. In the cockroach Blattella germanica, we had previously characterized one isoform of the ecdysone receptor, BgEcR-A, and two isoforms of its heterodimeric partner, BgRXR-S and BgRXR-L. One of the early-late genes of the 20E-triggered genetic hierarchy, is HR3. In the present paper, we report the discovery of three isoforms of HR3 in B. germanica, that were named BgHR3-A, BgHR3-B(1) and BgHR3-B(2). Expression studies in prothoracic gland, epidermis and fat body indicate that the expression of the three isoforms coincides with the peak of circulating ecdysteroids at each nymphal instar. Experiments in vitro with fat body tissue have shown that 20E induces the expression of BgHR3 isoforms, and that incubation with 20E and the protein inhibitor cycloheximide does not inhibit the induction, which indicates that the effect of 20E on BgHR3 activation is direct. This has been further confirmed by RNAi in vivo of BgEcR-A, which has shown that this nuclear receptor is required to fully activate the expression of BgHR3. RNAi has been also used to demonstrate the functions of BgHR3 in ecdysis. Nymphs with silenced BgHR3 completed the apolysis but were unable to ecdyse (they had duplicated and superimposed the mouth parts, the hypopharinge, the tracheal system and the cuticle layers). This indicates that BgHR3 is directly involved in ecdysis. Finally, RNAi of specific isoforms has showed that they are functionally redundant, at least regarding the ecdysis process.  相似文献   

16.
17.
Segment formation in the long germ insect Drosophila is dominated by overlapping gap gene domains in the syncytial blastoderm. In the short germ beetle Tribolium castaneum abdominal segments arise from a cellular growth zone, implying different patterning mechanisms. We describe here the single Tribolium ortholog of the Drosophila genes knirps and knirps-related (called Tc-knirps). Tc-knirps expression is conserved during head patterning and at later stages. However, posterior Tc-knirps expression in the ectoderm is limited to a stripe in A1, instead of a broad abdominal domain covering segment primordia A2-A5 as in Drosophila. Tc-knirps RNAi yields only mild defects in the abdomen, at a position posterior to the abdominal Tc-knirps domain. In addition, Tc-knirps RNAi larvae lack the antennal and mandibular segments. These defects are much more severe than the head defects caused by combined inactivation of Dm-knirps and Dm-knirps-related. Our findings support the notion that the role of gap gene homologs in abdominal segmentation differs fundamentally in long and short germ insects. Moreover, the pivotal role of Tc-knirps in the head suggests an ancestral role for knirps as head patterning gene. Based on this RNAi analysis, Tc-knirps functions neither in the head nor the abdomen as a canonical gap gene.  相似文献   

18.
Root Knot nematode (RKN; Meloidogyne spp.) is one of the most devastating parasites that infect the roots of hundreds of plant species. RKN cannot live independently from their hosts and are the biggest contributors to the loss of the world''s primary foods. RNAi gene silencing studies have demonstrated that there are fewer galls and galls are smaller when RNAi constructs targeted to silence certain RKN genes are expressed in plant roots. We conducted a comparative genomics analysis, comparing RKN genes of six species: Meloidogyne Arenaria, Meloidogyne Chitwoodi, Meloidogyne Hapla, Meloidogyne Incognita, Meloidogyne Javanica, and Meloidogyne Paranaensis to that of the free living nematode Caenorhabditis elegans, to identify candidate genes that will be lethal to RKN when silenced or mutated. Our analysis yielded a number of such candidate lethal genes in RKN, some of which have been tested and proven to be effective in soybean roots. A web based database was built to house and allow scientists to search the data. This database will be useful to scientists seeking to identify candidate genes as targets for gene silencing to confer resistance in plants to RKN.

Availability

The database can be accessed from http://bioinformatics.towson.edu/RKN/  相似文献   

19.
20.
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号