首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined genes involved in the regulatory pathway of gibberellin (GA) in meristems of Streptocarpus rexii. The plants do not possess a typical shoot apical meristem (SAM) and form unique meristems: the basal meristem extends the lamina area of one cotyledon to produce anisocotylous seedlings; the groove meristem forms new leaves at the base of the macrocotyledon. Exogenous application of GA significantly suppresses the basal meristem activity in developing cotyledons and the seedlings remain isocotyl. To examine the role of endogenous GA on these meristems in vivo, we isolated homologs of GA2-oxidase responsible for degrading active GAs (SrGA2ox), and GA20-oxidase regulating the rate limiting step of active GA synthesis (SrGA20ox). During embryogenesis, while first partly overlapping, the expression of SrGA2ox and SrGA20ox became more differentiated and mutually exclusive, ending with SrGA2ox being expressed solely in the adaxial–proximal domain of the embryo in regions with meristem activity, whereas SrGA20ox was restricted to the fork between the two cotyledons. The latter may be responsible for suppressing the formation of an embryonic SAM in S. rexii. In developing seedlings, SrGA2ox expression also followed the centers of meristem activity, where SrGA20ox expression was excluded. Our results suggest that low levels of GA are required in S. rexii meristems for their establishment and maintenance. Thus, the meristems in S. rexii share similar regulatory pathways suggested for the SAM in model plants, but that in S. rexii evolutionary modifications involving a lateral transfer of function, from shoot to leaves, is implicated in attaining the unusual morphology of the plants.  相似文献   

2.
Soybean is a typical short-day crop, and its photoperiodic and gibberellin (GA) responses for the control of flowering are critical to seed yield. The GmGBP1 mRNA abundance in leaves was dramatically increased in short-days (SDs) compared to that in long-days in which it was consistently low at all time points from 0 to 6 days (days after transfer to SDs). GmGBP1 was highly expressed in leaves and exhibited a circadian rhythm in SDs. Ectopic overexpression of GmGBP1 in tobaccos caused photoperiod-insensitive early flowering by increasing NtCO mRNA levels. GmGBP1 mRNA abundance was also increased by GAs. Transgenic GmGBP1 overexpressing (-ox) tobacco plants exhibited increased GA signaling-related phenotypes including flowering and plant height promotion. Furthermore, the hypocotyl elongation, early-flowering and longer internode phenotypes were largely accelerated by GA3 application in the GmGBP1-ox tobacco seedlings. Being consistent, overexpression of GmGBP1 resulted in significantly enhanced GA signaling (evidenced suppressed expression of NtGA20ox) both with and without GA treatments. GmGBP1 was a positive regulator of both photoperiod and GA-mediated flowering responses. In addition, GmGBP1-ox tobaccos were hypersensitive to ABA, salt and osmotic stresses during seed germination. Heat-inducible GmGBP1 also enhanced thermotolerance in transgenic GmGBP1-ox tobaccos during seed germination and growth. GmGBP1 protein was localized in the nucleus. Analyses of a series of 5′-deletions of the GmGBP1 promoter suggested that several cis-acting elements, including P-BOX, TCA-motif and three HSE elements necessary to induce gene expression by GA, salicic acid and heat stress, were specifically localized in the GmGBP1 promoter region.  相似文献   

3.
The Green Revolution (GR-I) included worldwide adoption of semi-dwarf rice cultivars (SRCs) with mutant alleles at GA20ox2 or SD1 encoding gibberellin 20-oxidase. Two series of experiments were conducted to characterize the pleiotropic effects of SD1 and its relationships with large numbers of QTLs affecting rice growth, development and productivity. The pleiotropic effects of SD1 in the IR64 genetic background for increased height, root length/mass and grain weight, and for reduced spikelet fertility and delayed heading were first demonstrated using large populations derived from near isogenic IR64 lines of SD1. In the second set of experiments, QTLs controlling nine growth and yield traits were characterized using a new molecular quantitative genetics model and the phenotypic data of the well-known IR64/Azucena DH population evaluated across 11 environments, which revealed three genetic systems: the SD1-mediated, SD1-repressed and SD1-independent pathways that control rice growth, development and productivity. The SD1-mediated system comprised 43 functional genetic units (FGUs) controlled by GA. The SD1-repressed system was the alternative one comprising 38 FGUs that were only expressed in the mutant sd1 backgrounds. The SD1-independent one comprised 64 FGUs that were independent of SD1. GR-I resulted from the overall differences between the former two systems in the three aspects: (1) trait/environment-specific contributions; (2) distribution of favorable alleles for increased productivity in the parents; and (3) different responses to (fertilizer) inputs. Our results suggest that at 71.4 % of the detected loci, a QTL resulted from the difference between a functional allele and a loss-of-function mutant, whereas at the remaining 28.6 % of loci, from two functional alleles with differentiated effects. Our results suggest two general strategies to achieve GR-II (1) by further exploiting the genetic potential of the SD1-repressed and SD1-independent pathways and (2) by restoring the SD1-mediated pathways, or ‘back to the nature’ to fully exploit the genetic diversity of those loci in the SD1-mediated pathways which are virtually inaccessible to most rice-breeding programs worldwide that are exclusively based on sd1.  相似文献   

4.
Blue Light Inhibition of Tuberization in a Day-Neutral Potato   总被引:1,自引:0,他引:1  
In tests on the effects of light quality on potato tuberization, continuous blue light was found to consistently inhibit tuberization of tissue-cultured plantlets of Solanum tuberosum ssp. tuberosum cv. ??Norland??. Other tested cultivars, including sports of ??Norland??, formed tubers under continuous blue light. Microarrays identified BL, GA7ox, and Nudix genes as exhibiting altered expression in response to blue light treatment. Quantitative RT-PCR (qRT-PCR) showed that GA7ox RNA increased in ??Norland?? but not in ??Sangre?? plantlets in blue light compared to darkness. RNA levels of genes identified in the literature as having roles in potato tuberization were also measured using qRT-PCR. Levels of GA20o1x, but not GA2ox, RNA increased in response to blue light in ??Norland?? plantlets. BEL5 RNA content was greater under blue light compared to darkness for both ??Norland?? and ??Sangre?? plants. Levels of FT were not significantly different in blue light compared to dark-treated ??Norland?? plants, but were low in blue light-treated compared to dark-treated ??Sangre?? plants. Addition of ancymidol to ??Norland?? plants exposed to blue light overcame blue light inhibition of tuberization. Ancymidol prevents the oxidation of ent-kaurene to ent-kaurenoic acid, thus inhibiting gibberellin biosynthesis. These data suggest that blue light may increase GA accumulation in ??Norland?? plants, as has been shown to occur in Arabidopsis plants. The novel effect of blue light in inhibiting tuberization of ??Norland?? plants suggests that this system could be a useful tool in further elucidating the mechanisms of day-neutral potato tuberization.  相似文献   

5.
6.
Gibberellins (GAs) are important in the floral regulatory networks of angiosperm plants. Several lines of evidence suggest that GAs also play a pivotal role in conifer male and female cone development. To gain new insights into the GA metabolism pathway in conifer trees and the role of GA metabolism in male and female cone development, we identified GA metabolism genes in Pinus tabuliformis. These included one PtCPS gene, one PtKS gene, one PtKO gene, TWO PtKAO genes, one PtGA20ox gene, two PtGA3ox genes and 12 PtGA2ox genes. According to phylogenetic analysis, the GA biosynthesis pathway evolved after the divergence of mosses from ferns, but the GA-deactivating gene family underwent divided expansion after divergence of the angiosperms from gymnosperms. However, the active sites of all GA metabolism enzymes were conserved during the evolution of land plants. During male and female cone development of P. tabuliformis, the expression of most of the PtGA2ox genes, especially PtGA2ox10, was higher than GA biosynthesis genes. However, the expression of PtKAO1 in cones peaked at a very early developmental stage. The expression pattern of GA metabolism genes indicated that GAs play different roles at the early and late stages of cone development.  相似文献   

7.
8.
9.
Gibberellin 2-oxidases (GA2ox) are important enzymes that maintain the balance of bioactive GAs in plants. GA2ox genes have been identified and characterized in many plants, but these genes were not investigated in Brassica napus. Here, we identified 31 GA2ox genes in B. napus and 15 of these BnaGA2ox genes were distributed in the A and C subgenomes. Subcellular localization predictions suggested that all BnaGA2ox proteins were localized in the cytoplasm, and gene structure analysis showed that the BnaGA2ox genes contained 2–4 exons. Phylogenetic analysis indicated that BnGA2ox family proteins in monocotyledons and dicotyledons can be divided into four groups, including two C19-GA2ox and two C20-GA2ox clades. Group 4 is a C20-GA2ox Class discovered recently. Most BnaGA2ox genes had a syntenic relationship with AtGA2ox genes. BnaGA2ox genes in the C subgenome had experienced stronger selection pressure than genes in the A subgenome. BnaGA2ox genes were highly expressed in specific tissues such as those involved in growth and development, and most of them were mainly involved in abiotic responses, regulation of phytohormones and growth and development. Our study provided a valuable evolutionary analysis of GA2ox genes in monocotyledons and dicotyledons, as well as an insight into the biological functions of GA2ox family genes in B. napus.  相似文献   

10.
Drought resistance is increased in plants by the absence of the hormone gibberellic acid (GA) or by a lack of GA sensitivity. We studied the effects of tissue-specific reduction in GA levels on drought tolerance, on recovery from drought stress, and on primary and secondary growth using transgenic tobacco plants expressing the GA-inactivating gene PtGA2ox 1 (GA 2-oxidase) specifically in leaves, stems, or roots. Localized reduction of bioactive GA1 levels was achieved by tissue-specific expression of the PtGA2ox 1 gene in leaves using the rbcs promoter (LD plants), in roots using the TobRB7 promoter (RD plants), and in stems using the LMX5 promoter (SD plants). In response to drought stress, all transgenic tobacco plants exhibited reduced primary and secondary growth and increased drought tolerance with a corresponding reduction in malondialdehyde levels, higher relative water content, increased proline and sugar content, and elevated peroxidase, superoxide dismutase, and catalase activities relative to wild-type plants. The highest level of drought tolerance and the most rapid recovery from stress was achieved by localized reduction of GA1 in the roots of the RD transgenic plants. In addition, although the total bioactive GA1 content in RD and LD plants was essentially identical, the heights of LD plants were significantly greater and drought tolerance was significantly less than in RD plants. It is possible that the site of gibberellin-related gene expression plays an important role in the balance between growth and drought tolerance.  相似文献   

11.
12.

Overexpression of GA20 oxidase gene has been a recent trend for improving plant growth and biomass. Constitutive expression of GA20ox has successfully improved plant growth and biomass in several plant species. However, the constitutive expression of this gene causes side-effects, such as reduced leaf size and stem diameter, etc. To avoid these effects, we identified and employed different tissue-specific promoters for GA20ox overexpression. In this study, we examined the utility of At1g promoter to drive the expression of GUS (β-glucuronidase) reporter and AtGA20ox genes in tobacco and Melia azedarach. Histochemical GUS assays and quantitative real-time-PCR results in tobacco showed that At1g was a root-preferential promoter whose expression was particularly strong in root tips. The ectopic expression of AtGA20ox gene under the control of At1g promoter showed improved plant growth and biomass of both tobacco and M. azedarach transgenic plants. Stem length as well as stem and root fresh weight increased by up to 1.5–3 folds in transgenic tobacco and 2 folds in transgenic M. azedarach. Both tobacco and M. azedarach transgenic plants showed increases in root xylem width with xylem to phloem ratio over 150–200% as compared to WT plants. Importantly, no significant difference in leaf shape and size was observed between At1g::AtGA20ox transgenic and WT plants. These results demonstrate the great utility of At1g promoter, when driving AtGA20ox gene, for growth and biomass improvements in woody plants and potentially some other plant species.

  相似文献   

13.
Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.  相似文献   

14.
Gibberellin 2-oxidases (GA2oxs) irreversibly convert bioactive gibberellins (GAs) and their immediate precursors into inactive GAs via 2-β hydroxylation and so regulate gibberellin content in plants. However, to the best of our knowledge, little has been known about the GA2oxs and its function in cool season turfgrass Poa pratensis. In this study, rapid amplification of cDNA end (RACE) was employed to isolate PpGA2ox from P. pratensis. The open reading frame of PpGA2ox was 1 047 bp in length, corresponding to 348 amino acids. PpGA2ox was localized in both nucleus and cytoplasm. The expression of PpGA2ox could be up-regulated by 10 μM gibberellic acid, 5 μM methyl jasmonate, or 10 μM indole-3-acetic acid. In addition, its native promoter could drive GUS expression in both leaf apex and shoot apical region. Moreover, overexpression of PpGA2ox in Arabidopsis led to GA-deficiency leading to dwarf phenotype, delayed flowering time, and increased chlorophyll content. Our study suggests that PpGA2ox could be a candidate gene for breeding new cultivars of P. pratensis.  相似文献   

15.
To achieve broader range of the defensin antimicrobial activity, based on the sd2 gene sequence, the modified gene, sd2mod, was constructed. Hybrid genes, sd2-licBM2, licBM2-sd2, licBM2-sd2mod, and sd2mod-licBM2, in which the wild-type and modified gene sequences were fused in frame with the reporter gene encoding thermostable lichenase, were constructed. Expression of the wild-type, modified, and hybrid genes was examined in the cells of pro- and eukaryotes. It was demonstrated that these genes were efficiently expressed in the cells of lower eukaryotes, the yeast. Inhibiting effect of the SD2 and SDmod proteins as the components of the hybrid proteins, SD2-LicBM2 and SD2mod-LicBM2, on the growth of the Fusarium culmorum hyphae was similar to that of the wild-type and modified proteins. It was shown that the presence of lichenase in the hybrid proteins facilitated selection and analysis of the hybrid proteins expression in transgenic organisms.  相似文献   

16.
Successful application of genetic transformation for integration of a transgene is much dependent upon availability of an efficient in vitro plant regeneration procedure and detection of transgene insertion and expression. Isolated immature embryos (IEs) of Eragrostis tef cultivar DZ-01-196 were used for embryogenic callus formation and the callus was transformed with GA inactivating gene PcGA2ox under the control of a triple CaMV 35S promoter using Agrobacterium transformation procedure. Embryogenic callus was induced from immature embryos in a medium containing KBP minerals in the presence of 2,4-dichlorophenoxiyacetic acid. The embryogenic calli were further inoculated with Agrobacterium and the calli were grown in co-cultivation medium (CCM) followed by selection in KBP and regeneration (K4NB) media. Putatively transformed E. tef embryogenic calli were tolerant to treatment with the selectable marker kanamycin, while 75 mg l 1 geneticin inhibited growth of non-transformed shoots derived from matured embryos completely after 12 days. A total of 55 plants were regenerated from all the embryogenic calli to fully viable plants setting seeds at maturity. Eight putatively transformed T0 plants were produced carrying the transgene in their genome which was detected by PCR. Sequence analysis confirmed amplified PCR products to have 97.2 and 99.8% sequence identity to PcGA2ox and nptII, respectively. However, detection of the transgene, PcGA2ox or nptII, in T1 plants was inconsistent although phenotypic analysis of T1 plants showed changes in pheno-morphic and agronomic characters such as plant height, number of internodes, tillering, panicle length, biomass, yield as well as GA content. Culm reduction was due to absence of elongation of the upper-most internodes. Panicle length in semi-dwarfed plants showed no relation with culm length. GA analysis showed plants with semi-dwarf phenotype to be associated with a low level of bioactive GA1 and its immediate precursors. Up to 3.7 fold increase in grain yield per plant was found in some semi-dwarfed plants.  相似文献   

17.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

18.
Switchgrass (Panicum virgatum L.) is considered a model herbaceous energy crop for the USA, for its adaptation to marginal land, low rainfall and nutrient‐deficient soils; however, its low biomass yield is one of several constraints, and this might be rectified by modulating plant growth regulator levels. In this study, we have determined whether the expression of the Zea mays gibberellin 20‐oxidase (ZmGA20ox) cDNA in switchgrass will improve biomass production. The ZmGA20ox gene was placed under the control of constitutive CaMV35S promoter with a strong TMV omega enhancer, and introduced into switchgrass via Agrobacterium‐mediated transformation. The transgene integration and expression levels of ZmGA20ox in T0 plants were analysed using Southern blot and qRT‐PCR. Under glasshouse conditions, selected transgenic plants exhibited longer leaves, internodes and tillers, which resulted in twofold increased biomass. These phenotypic alterations correlated with the levels of transgene expression and the particular gibberellin content. Expression of ZmGA20ox also affected the expression of genes coding for key enzymes in lignin biosynthesis. Our results suggest that the employment of ectopic ZmGA20ox and selection for natural variants with high level expression of endogenous GA20ox are appropriate approaches to increase biomass production of switchgrass and other monocot biofuel crops.  相似文献   

19.
20.
This study describes the optimization of PCR parameters and testing of a wide number of microbial species to establish a highly specific and sensitive PCR-based method of detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 strain in pure cultures and seeded waters from the Gulf of Mexico (gulf water). The selected open reading frame 8 (ORF8) DNA-specific oligonucleotide primers tested were found to specifically amplify all 35 pathogenic V. parahaemolyticus O3:K6 pandemic isolates, whereas these primers were not found to detectably amplify two strains of V. parahaemolyticus O3:K6 that were isolated prior to the 1996 outbreaks, 122 non-O3:K6 strains of V. parahaemolyticus, 198 non-V. parahaemolyticus spp., or 16 non-Vibrio bacterial spp. The minimum level of detection by the PCR method was 1 pg of purified genomic DNA or 102 ORF8-positive V. parahaemolyticus O3:K6 cells in 100 ml of water. The effectiveness of this method for the detection of ORF8-positive isolates in environmental samples was tested in gulf water seeded with 10-fold serial dilutions of this pathogen. A detection level of 103 cells per 100 ml of gulf water was achieved. Also, the applicability of this methodology was tested by the detection of this pathogen in gulf water incubated at various temperatures for 28 days. This PCR approach can potentially be used to monitor with high specificity and well within the required range of sensitivity the occurrence and distribution of this newly emerged pathogenic V. parahaemolyticus O3:K6 strain in coastal, marine, and ship ballast waters. Early detection of V. parahaemolyticus O3:K6 will help increase seafood safety and decrease the risk of infectious outbreaks caused by this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号