首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of culturable bacteria in the rhizosphere, rhizoplane, and interior root tissues of moso bamboo plants was investigated in this study. Of the 182 isolates showing different colony characteristics on Luria–Bertani and King B plates, 56 operational taxonomic units of 22 genera were identified by 16S ribosomal RNA gene sequence analysis. The majority of root endophytic bacteria were Proteobacteria (67.5%), while the majority of rhizospheric and rhizoplane bacteria were Firmicutes (66.3% and 70.4%, respectively). The most common genus in both the rhizosphere and on the rhizoplane was Bacillus (42.4% and 44.4%, respectively), while Burkholderia was the most common genus inside the roots, comprising 35.0% of the isolates from this root domain. The endophytic bacterial community was less diverse than the rhizoplane and rhizospheric bacterial communities. Members of Lysinibacillus, Bacillus, and Burkholderia were found in all three root domains, whereas many isolates were found in only a single domain. Our results show that the population diversity of culturable bacteria is abundant in the root domains of moso bamboo plants and that obvious differences exist among the rhizospheric, rhizoplane, and endophytic bacterial communities.  相似文献   

2.
The composition of the bacterial community associated with plant roots is influenced by a variety of plant, environmental factors and also management practices. Our study aimed at detecting the root associated bacterial communities of Chinese cabbage under different fertilization regimes using cultivation dependent methods. The cultivable population was studied using plate count assay, fatty acid methyl ester (FAME) analysis and carbon substrate utilization␣(SU)using BIOLOG™ plates. Taxonomical identification of the isolates by FAME resulted in about 83% identification and they represented 9 and 14 different known bacterial genera from the rhizosphere and root interior respectively from Proteobacteria (α, β, and γ), firmicutes (actinobacteria and the Bacillus groups) and Bacteroidetes. Pseudomonas and Bacillus were associated with the plants grown under all the fertilized conditions and actinobacteria could be observed only in rhizosphere of plants grown on unfertilized plots. FAME and BIOLOG profiles of the rhizosphere and endophytic isolates could separate them with reference to fertilization. Principal component analysis (PCA) on the BIOLOG SU revealed that the isolates were metabolically dissimilar. The diversity, as revealed by the diversity indices was greater among the isolates obtained from unfertilized samples than that of fertilized ones. The isolates analyzed for different traits related to plant growth promotion revealed differences between rhizosphere and endophytic isolates and also with reference to the treatments. The highest percentage of phosphate solubilizing bacteria (PSB) and 1-aminocyclopropane-1-carboxylic acid (ACC) utilizers was recorded in chemical fertilizer treated samples, followed by the organic fertilizer treated. The results from this study indicate that fertilizers have an effect on the root associated bacterial communities of Chinese cabbage and also on their physiological characteristics related to plant growth promotion.  相似文献   

3.
This research work was oriented to outlining the diversity of Gram-negative culturable portion of the bacterial community in three fruit plants rhizosphere. Rhizosphere samples were taken from European chestnut (Castanea sativa Mill), true service tree (Sorbus domestica L.) and cornelian cherry (Cornus mas L.) plants. Experiments were conducted for three years during the vegetation period, and the bacterial community structure was assessed with cultivation-dependent approach. Many Gram-negative isolates (n = 251) from the rhizosphere survived sub culturing and were identified by biochemical tests. A total of 57 species belonging to 29 genera were identified and assigned to four broad taxonomic groups (Bacteroidetes, Alpha-, Beta- and Gamma-proteobacteria). Several specific bacterial cluster communities were identified inside all the three rhizospheres. Most of the species belonged to the genera Moraxella, Pseudomonas, Pantoea, Enterobacter and Acinetobacter. In addition, while, using the plate count analysis, large discrepancies in numbers among physiological groups of bacteria cultured from three rhizosphere samples have not been revealed, more expressive distinctions among bacterial populations were obtained concerning the relative abundance of different genera, different taxonomic groups as well as different diversity indices. Furthermore, the number of cultured bacteria and their taxonomic distribution in the rhizosphere of all three plants changed not only explicitly during vegetation period but continually during the three years of investigation. It seems that rhizosphere bacterial populations of each plant are under the influence of the specific root-released materials.  相似文献   

4.
Plants are chronically associated with microorganisms, residing all tissues. Holonomic analysis of diversity of established rhizobacteria in uncultivated plants is scarce. Thus, the present study was conducted to access the root-associated bacterial diversity of 6 crops (maize, canola, soybean, reed canarygrass, alfafa, and miscanthus) and 20 uncultivated plant species in the region of Sainte-Anne-de-Bellevue, Québec, Canada, using pure-culture methods. Based on 16S rRNA gene sequence analysis, 446 bacterial isolates were distributed onto four phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes), 32 families and 90 genera. Proteobacteria constituted the largest group of isolates (240), 40% of ectophytic and 61% of endophytic bacteria. Representatives of the genera Bacillus and Pseudomonas dominated in rhizosphere soil; Microbacterium and Pseudomonas were the predominant endophytes. Some genera were associated with specific plant species, such as Stenotrophomonas, Yersinia, Labrys and Luteibacter. Several endophytes were occasionally observed in the rhizosphere, and vice versa. This is the first survey of culturable endophytic bacteria associated with uncultivated plants in Québec. The culturable bacterial community studied herein are assumed to represent a portion of the entire phytomicrobiome of the evaluated plants. Results confirmed that the crops and uncultivated plants of Québec represent an extremely rich reservoir of diverse rhizobacteria.  相似文献   

5.
辽宁盘锦三角洲翅碱蓬根系及内生细菌群落多样性   总被引:2,自引:0,他引:2  
【目的】翅碱蓬(Suaeda heteroptera)是一种典型的盐碱指示物,对重金属和石油污染的盐碱土壤有一定的修复作用,但是关于翅碱蓬根系与根系内生微生物之间的关系、微生物的多样性以及根系微生物在生物修复中所起作用的研究较少。本文以盘锦"红海滩"的翅碱蓬为例,研究翅碱蓬根系及根系内生细菌菌群种类和结构。【方法】通过传统的培养方法和非培养的高通量测序方法对翅碱蓬根系土壤样品、根系附着物样品以及根系匀浆样品中微生物群落多样性进行分析。【结果】传统方法共分离得到67株细菌,选择代表菌28株,根据其形态特征和生理生化特征,结合16S r RNA基因序列比对进行鉴定,它们分别属于盐单胞菌属(Halomonas)、海细菌属(Marinobacterium)、芽孢杆菌属(Bacillus)、副球菌属(Paracoccus)、假单胞菌属(Pseudomonas)、游动球菌属(Planococlus)、沙雷氏菌属(Serratia)、刘志恒菌属(Zhihengliuella)等。利用高通量测序技术对样品进行多样性分析,其中根系附着物样品的菌群丰度和多样性最高,依次分别为根系土壤样品和根系匀浆样品。3个样品中有效序列群落结构可分为12个门,包括酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、绿菌门(Chlorobi)、绿弯菌门(Chloroflexi)、蓝菌门(Cyanobacteria)、厚壁菌门(Firmicutes)、芽单胞菌门(Gemmatimonadetes)、浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)、螺旋体门(Spirochaetes)和疣微菌门(Verrucomicrobia)。根系匀浆样品中蓝菌门为优势门类,占整个菌群的42%,变形菌门为次优势类群,占33%。变形菌门在根系附着物样品中为优势门类,占46%,拟杆菌门为次优势门类,占16%。根系土壤样品中拟杆菌门为优势门类,占整个菌群的37%,次优势类群为变形菌门,占20%。【结论】翅碱蓬根系和内生菌具有丰富的多样性,其根系微生物可能会在重金属和石油污染土壤的生物修复中起一定的修复作用。  相似文献   

6.
There is currently an increasing demand for the characterization of endophytic bacteria isolated from different parts of plants (rhizosphere, roots, fruit, leaf) in order to improve the organic agriculture practices. The current research was performed to identify both rhizospheric bacteria isolated from the rhizosphere of Ficus carica in three different sites in the north of Tunisia and endophytic bacteria isolated from dried figs. We then characterized them for a diversity of plant growth-promoting (PGP) activities. A collection of 120 isolates from rhizospheric soil and 9 isolates from dried figs was obtained and purified. 16SrDNA gene amplification of rhizospheric bacteria revealed significant diversity and allowed for the assigning of the isolates to 6 phyla: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Representative strains of the collection (90 strains) were tested for numerous PGP activities and resistance to abiotic stresses. The most common PGP trait for all bacteria from the three regions was siderophore production (62%), followed by cellulase (38%), then protease activity (37%), then by lipases activity (17%) and lastly by solubilization of phosphates (9%). Twenty -three strains that showed most PGP traits were selected, 8 strains presented 12 or more, and 15 strains displayed between 7 and 11 of 17 PGP activities. The majority of the isolates manifested a possible adaptation to abiotic stress and unfavorable environments. PCR-DGGE analysis of soil rhizosphere of the three sites allowed also for the acquisition of a Cluster analysis of rhizospheric bacterial communities. Our current study identified and characterized for the first time in Tunisia rhizospheric and endophytic bacteria from dried fruit of Ficus carica.  相似文献   

7.
为了解喀斯特典型物种-小蓬竹根际土壤微生物及不同部位内生真菌多样性,采用沿等高线等距离取样法采集小蓬竹根际土壤及健康植株,通过可培养对根际土微生物及内生菌进行分离,利用分子技术对其进行鉴定,根据鉴定结果构建系统发育树,并计算小蓬竹根际土壤微生物和根茎叶内生真菌多样性。结果如下:(1)共从根际土壤、根、茎、叶分离得到139个真菌菌株,隶属于27属,其中根际土壤分离得到34个真菌菌株隶属于12属,根部分离得到的63个内生真菌菌株隶属于17个属,茎部分离得到的14个内生真菌菌株隶属于8个属,叶部分离得到28个内生真菌菌株隶属于9个属;(2)根际土壤共分离得到41株细菌菌株,隶属于7个属26个种,20株放线菌菌株,隶属于1属15种;从Shannon-Wiener多样性指数、均匀度指数、Simpson指数排序来看,真菌主要表现为根 > 根际土壤 > 茎 > 叶,细菌和放线菌多样性均较低。(3)按层次聚类分析可分别将真菌、细菌、放线菌聚为3支。小蓬竹根际土壤、根、茎和叶具有丰富的微生物多样性,不同部位菌群组成存在差异性(P<0.05),且存在以假单胞菌属、芽孢杆菌属等为优势属的抗盐耐旱菌群,这有助于揭示小蓬竹对喀斯特生境的适应性,以及为微生物-植物群落之间相互关系提供一定基础数据,为后期寻找小蓬竹相关耐性功能菌奠定基础。  相似文献   

8.
Differences between endophytic and ectophytic bacterial communities with stress on antagonistic bacteria, were studied by comparing the composition of communities isolated from the rhizosphere, phyllosphere, endorhiza and endosphere of field-grown potato plants using a multiphasic approach. Terminal restriction fragment length polymorphism analysis of 16S rDNA of the bacterial communities revealed discrete microenvironment-specific patterns. To measure the antagonistic potential of potato-associated bacteria, a total of 2648 bacteria were screened by dual testing of antagonism to the soilborne pathogens Verticillium dahliae and Rhizoctonia solani. Composition and diversity of bacterial antagonists were mainly specific for each microenvironment. The rhizosphere and endorhiza were the main reservoirs for antagonistic bacteria and showed the highest similarity in their colonisation by antagonists. The most prominent species of all microenvironments was Pseudomonas putida, and rep-PCR with BOX primers showed that these isolates showed microenvironment-specific DNA fingerprints. P. putida isolates from the rhizosphere and endorhiza gave nearly identical fingerprints confirming the high similarity of bacterial populations. The phlD gene, involved in the production of the antibiotic 2,4-diacetyl-phloroglucinol, was found only among Pseudomonas isolates from the rhizosphere and endorhiza. Evaluation of the bacterial isolates for biocontrol potential based on fungal antagonism and physiological characteristics resulted in the selection of five promising isolates from each microenvironment. The most effective isolate was Serratia plymuthica 3Re4-18 isolated from the endorhiza.  相似文献   

9.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

10.
The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs) were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE) and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg−1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg−1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg−1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a species resource for the isolation of PAH-degrading endophytic bacteria.  相似文献   

11.
赵娟  刘涛  潘磊  靳百慧  赵丹  陈晨  朱有勇  何霞红 《生态学杂志》2015,26(12):3737-3745
采用组织分离法和土壤稀释涂板法,对元阳哈尼梯田2个地方品种‘月亮谷’和‘红脚老粳’的根部内生细菌及根际土壤细菌进行了分离,研究元阳梯田传统水稻品种特殊的内生菌组成.结果表明: 试验共得到399个菌株.经形态特征及生理生化鉴定,月亮谷根部和其根际土壤分别分离到8和5个属,其中5个属是共有的;红脚老粳的根部和其根际土壤中分别分离到10和7个属,其中6个属是共有的.经分子生物学鉴定,月亮谷根部分离到11个种和5个属,根际土壤分离到8个种和4个属,其中5个种和4个属是共有的;红脚老粳根部分离到9个种和5个属,根际土壤分离到10个种和3个属,其中4个种和2个属是共有的.通过分子生物学鉴定,大部分菌株都可以鉴定到种,而通过形态及生理生化特性只能初步鉴定到属,但两种方法在属层次上的鉴定结果基本一致.元阳地方水稻根部内生细菌及根际土壤细菌具有一定的种属同源性与特异性.  相似文献   

12.
The functional diversity of endophytic and rhizospheric microorganisms associated with the promotion of plant growth includes increased availability of plant nutrients, phytohormone synthesis and phytopathogen suppression. We used the hypothesis that the unknown root and rhizospheric community associated with the Butia purpurascens palm, an endemic species of the Cerrado, could be composed of microbiota with great functional diversity. Thus, the potential of the isolates of this community for four functional traits was evaluated: solubilization of calcium phosphate (CaHPO4) and iron phosphate (FePO4), synthesis of indoleacetic acid (IAA) and suppression of seed- and fruit-spoilage fungi of B. purpurascens. A total of 166 bacterial isolates, most belonging to the phylum Proteobacteria (94%), and 46 fungal isolates (Ascomycota) were tested. None of the isolates showed the four functional traits tested, but 72% presented two traits (CaHPO4 solubilization and IAA synthesis). Fifteen fungi (27% of the isolates) presented only the trace for IAA, whereas the capacity for antibiosis was observed in only eight bacteria. CaHPO4-solubilization capacity was evidenced by all bacterial isolates and by some fungal isolates. The functional trait for IAA production was present in all isolates, and production levels were significantly above 100 μg mL?1 for some bacteria. Isolates of the genus Bacillus efficiently suppressed the growth of spoilage fungi tested, with relative inhibition rates reaching levels higher than 60% when using Bacillus subtilis. These results attest to the multifunctionality of the endophytic and rhizospheric isolates of B. purpurascens for the promotion of plant growth. This is the first study that sought to identify the root endophytic and rhizospheric microbiota associated with the B. purpurascens palm for the bioprospection of species with functional traits related to the promotion of plant growth, thus opening the way for in vivo tests in plants of commercial or ecological interest.  相似文献   

13.
Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found.  相似文献   

14.
Endophytic bacteria associated with the roots of coastal sand dune plants were isolated, taxonomically characterized, and tested for their plant growth-promoting activities. Ninety-one endophytic bacterial isolates were collected and assigned to 17 different genera of 6 major bacterial phyla based on partial 16S rDNA sequence analyses. Gammaproteobacteria represented the majority of the isolates (65.9%), and members of Pseudomonas constituted 49.5% of the total isolates. When testing for antagonism towards plant pathogenic fungi, 25 strains were antagonistic towards Rhizoctonia solani, 57 strains were antagonistic towards Pythium ultimum, 53 strains were antagonistic towards Fusarium oxysporum, and 41 strains were antagonistic towards Botrytis cinerea. Seven strains were shown to produce indole acetic acid (IAA), 33 to produce siderophores, 23 to produce protease, 37 to produce pectinase, and 38 to produce chitinase. The broadest spectra of activities were observed among the Pseudomonas strains, indicating outstanding plant growth-promoting potential. The isolates from C. kobomugi and M. sibirica also exhibited good plant growth-promoting potential. The correlations among individual plant growth-promoting activities were examined using phi coefficients, and the resulting data indicated that the production of protease, pectinase, chitinase, and siderophores was highly related.  相似文献   

15.
Little is known about the composition and diversity of the bacterial community associated with plant roots. The purpose of this study was to investigate the diversity of bacteria associated with the roots of canola plants grown at three field locations in Saskatchewan, Canada. Over 300 rhizoplane and 220 endophytic bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 18 bacterial genera were identified with a similarity index >0.3, but 73% of the identified isolates belonged to four genera: Bacillus (29%), Flavobacterium (12%), Micrococcus (20%) and Rathayibacter (12%). The endophytic community had a lower Shannon-Weaver diversity index (1.35) compared to the rhizoplane (2.15), and a higher proportion of Bacillus, Flavobacterium, Micrococcus and Rathayibacter genera compared to rhizoplane populations. Genera identified in the endophytic isolates were also found in the rhizoplane isolates. Furthermore, principal component analysis indicated three clusters of bacteria regardless of their site of origin, i.e., rhizoplane or endophytic. In addition, the rhizoplane communities of canola and wheat grown at the same site differed significantly. These results indicate that diverse groups of bacteria are associated with field-grown plants and that endophytes are a subset of the rhizoplane community.  相似文献   

16.

Background and aims

Sorghum is the second most cultivated crop in Africa and is a staple food source in many African communities. Exploiting the associated plant growth-promoting bacteria (PGPB) has potential as an agricultural biotechnology strategy to enhance sorghum growth, yield and nutritional properties. Therefore this study aimed to evaluate factors that shape bacterial communities associated with sorghum farmed in South Africa, and to detect bacteria consistently associated with sorghum which may impart PGP activities.

Methods

Terminal-Restriction Fragment Length Polymorphism (T-RFLP) was used to assess factors that potentially shape rhizospheric (rhizosphere and rhizoplane) and endophytic (root, shoot, stem) bacterial communities associated with South African sorghum, and together with Denaturing Gradient Gel Electrophoresis (DGGE) to identify consistently sorghum-associated bacterial taxa.

Results

The sorghum rhizospheric communities were less variable than the endophytic ones. Geographical location was the main driver in describing bacterial community assemblages found in rhizospheric sorghum-linked niches, with total NO3-N, NH4-N, nitrogen, carbon, pH and, to a lesser extent, clay content identified as the main abiotic factors shaping sorghum-associated soil communities. Endophytic communities presented rather stochastic assemblages, with pH being the main variable explaining their structures. Despite community variations, specific bacterial taxa were consistently detected in sorghum-created rhizospheric and endophytic environments, irrespective of environmental factor effects.

Conclusions

Soil structure and composition, which are influenced by agricultural practices, played major roles in shaping sorghum-associated edaphic bacterial communities. In contrast, endophytic bacterial communities displayed more variation. Nevertheless, potentially agronomically relevant (cyano)bacterial taxa constantly associated with sorghum were identified which is suggestive of their deterministic recruitment.  相似文献   

17.
In Gram-negative bacteria, quorum-sensing (QS) communication is mostly mediated by N-acyl homoserine lactones (N-AHSL). The diversity of bacterial populations that produce or inactivate the N-AHSL signal in soil and tobacco rhizosphere was investigated by restriction fragment length polymorphism (RFLP) analysis of amplified 16S DNA and DNA sequencing. Such analysis indicated the occurrence of N-AHSL-producing strains among the alpha-, beta- and gamma-proteobacteria, including genera known to produce N-AHSL (Rhizobium, Sinorhizobium and Pseudomonas) and novel genera with no previously identified N-AHSL-producing isolates (Variovorax, Sphingomonas and Massilia). The diversity of N-AHSL signals was also investigated in relation to the genetic diversity of the isolates. However, N-AHSL-degrading strains isolated from soil samples belonged to the Bacillus genus, while strains isolated from tobacco rhizospheres belonged to both the Bacillus genus and to the alpha subgroup of proteobacteria, suggesting that diversity of N-AHSL-degrading strains may be modulated by the presence of the tobacco plant. Among these rhizospheric isolates, novel N-AHSL-degrading genera have been identified (Sphingomonas and Bosea). As the first simultaneous analysis of both N-AHSL-degrading and -producing bacterial communities in a complex environment, this study revealed the coexistence of bacterial isolates, belonging to the same genus or species that may produce or degrade N-AHSL.  相似文献   

18.
19.
The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.  相似文献   

20.
施用有机肥对侵蚀黑土玉米苗期根内生细菌多样性的影响   总被引:1,自引:1,他引:0  
为了解根内生细菌群落结构在土壤侵蚀条件下的变化,明确有机肥施用对其多样性的影响,本研究采用LNA-PCR和454高通量测序技术相结合的方法对土壤表层剥离30 cm和施用有机肥处理的玉米苗期根内生细菌群落结构进行研究,以表层土没有剥离和单施化肥处理为对照.试验共获得37820条16S rDNA有效序列,主要分布在4个门35个纲214个属和782个OTU,其中,变形菌门、厚壁菌门、放线菌门和拟杆菌门为优势菌门,但不同样品各菌门分布比例存在差异.土壤侵蚀降低了玉米苗期根内生细菌群落多样性,但增施有机肥可以增加根内生细菌群落多样性,这种作用以表层土剥离30 cm处理表现得更为突出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号