首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the mechanism(s) underlying enhanced oxidative stress in kidneys of salt-sensitive hypertension, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second days of life. After being weaned, male rats were assigned into four groups and treated for 2 wk with the following: vehicle + a normal sodium diet (NS, 0.4%, CON-NS), vehicle + a high-sodium diet (HS, 4%, CON-HS), CAP + NS (CAP-NS), and CAP + HS (CAP-HS). Systolic blood pressure was significantly increased in CAP-HS but not CAP-NS or CON-HS rats. Plasma and urinary 8-iso-prostaglandin F(2alpha) levels increased by approximately 40% in CON-HS and CAP-HS rats compared with their respective controls fed a NS diet (P < 0.05), and these parameters were higher in CAP-HS compared with CON-HS rats. Superoxide (O(2)(-)*) levels in the renal cortex and medulla increased by approximately 45% in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). Enhanced O(2)(-)* levels in the cortex and medulla in CAP-HS rats were prevented by preincubation of renal tissues with apocynin, a selective NAD(P)H oxidase inhibitor. Protein expression of NAD(P)H oxidase subunits, including p47(phox) and gp91(phox) in the renal cortex and medulla, was significantly increased in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats. In contrast, protein expression and activities of Cu/Zn SOD and Mn SOD were significantly increased in the renal medulla in both CAP-HS and CON-HS but in the cortex in CAP-HS rats only. Creatinine clearance decreased by approximately 45% in CAP-HS rats compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). O(2)(-)* levels in the renal cortex of CAP-HS rats negatively correlated with creatinine clearance (r = -0.76; P < 0.001). Therefore, regardless of enhanced SOD activity to suppress oxidative stress, increased oxidative stress in the kidney of CAP-treated rats fed a HS diet is likely the result of increased expression and activities of NAD(P)H oxidase, which may contribute to decreased renal function and increased blood pressure in these rats. Our results suggest that sensory nerves may play a compensatory role in attenuating renal oxidative stress during HS intake.  相似文献   

2.
To define the role of the renin-angiotensin-aldosterone system in a novel salt-sensitive model, neonatal Wistar rats were given capsaicin (50 mg/kg sc) on the first and second days of life. After weaning, male rats were divided into the following six groups and treated for 3 wk with: control + normal sodium diet (CON-NS), CON + high-sodium diet (CON-HS), CON + HS + spironolactone (50 mg x kg(-1) x day(-1), CON-HS-SP), capsaicin pretreatment + NS (CAP-NS), CAP-HS, and CAP-HS-SP. Radioimmunoassay shows that plasma renin activity (PRA) and plasma aldosterone level (PAL) were suppressed by HS, but they were higher in CAP-HS than in CON-HS and CON-HS-SP (P < 0.05). Both tail-cuff systolic blood pressure and mean arterial pressure were higher in CAP-HS than in all other groups (P < 0.05). Urine water and sodium excretion were increased with HS intake, but they were lower in CAP-HS than in CON-HS (P < 0.05). Western blot did not detect differences in adrenal AT1 receptor content. Therefore, insufficiently suppressed PRA and PAL in response to HS intake by sensory denervation may contribute to increased salt sensitivity and account for effectiveness of spironolactone in lowering blood pressure in this model.  相似文献   

3.
目的研究肾素-血管紧张素系统(RAS)基因血管紧张素转换酶(ACE)和血管紧张素转换酶2(ACE2)在感觉神经损伤性盐敏感性高血压大鼠心肌和肾脏中的表达情况,探讨ACE、ACE2在盐敏感性高血压发生发展中的作用。方法用乳鼠皮下注射辣椒辣素法建立模型。哺乳期后,大鼠被随机分成4组:对照+正常盐饮食组(CON-NS)、对照+高盐饮食组(CON-HS)、辣椒辣素+正常盐饮食组(CAP-NS)、辣椒辣素+高盐饮食组(CAP-HS)。四组大鼠分别接受4周不同的处理。至7周龄(分组饲养后第4周)处死大鼠,免疫组化检测大鼠心肌和肾脏ACE和ACE2蛋白的表达,反转录-聚合酶链式反应(RT-PCR)检测大鼠心肌和肾脏ACE和ACE2mRNA的表达。结果①至7周龄(分组饲养后第4周)各组动物体重差异无显著性(P〉0.05)。②各组动物在分组时(0周)鼠尾收缩压差异无显著性(P=0.583),至7周龄(分组饲养后第4周),CAP-HS组鼠尾收缩压明显高于其它三组(P〈0.01)。③心肌和肾脏ACE蛋白表达均升高。心肌组织,CAP-HS组与CON-NS比较,P〈0.01,与CON-HS和CAP-NS比较,P〈0.05;肾脏组织,CAP-HS组与其它三组比较,P〈0.01。④心肌和肾脏ACE2蛋白表达均降低。心肌和肾脏组织,CAP-HS组与CON-NS和CAP-NS比较,P〈0.01,与CON-HS比较,P〈0.05。⑤心肌和肾脏ACE mRNA表达均升高。心肌组织,CAP-HS组与CON-NS比较,P〈0.01,与CON-HS和CAP-NS比较,P〈0.05;肾脏组织,CAP-HS组与其它三组比较,P〈0.01。⑥心肌和肾脏ACE2 mRNA表达均降低。心肌和肾脏组织,CAP-HS组与CON-NS和CAP-NS比较,P〈0.01,与CON-HS比较,P〈0.05。结论感觉神经损伤性盐敏感性高血压大鼠心、肾ACE表达升高的同时有ACE2表达的降低,ACE和ACE2表达水平的差异可能与盐敏感性高血压的形成有关。  相似文献   

4.
Clinical studies have documented an abrupt rise in plasma endothelin-1 (ET-1) coincident with an increase in mean arterial pressure (MAP) during the response to acute stress. We therefore examined the ET(A) and ET(B) receptor-dependent effects of ET-1 on the pressor response to acute environmental stress in ET-1-dependent hypertension. Stress was induced by administration of air jet pulses (3 min) in ET(B) receptor-deficient (ET(B) sl/sl) rats fed normal salt (NS; 0.8% NaCl), high salt (HS; 8% NaCl), and HS plus the ET(A) receptor antagonist ABT-627 (5 mg.kg(-1).day(-1)) on successive weeks. MAP was chronically monitored by telemetry. Total pressor response (area under the curve) was significantly reduced in ET(B) sl/sl rats maintained on a HS vs. NS diet [-6.8 mmHg (SD 18.7) vs. 29.3 mmHg (SD 8.1) x 3 min, P < 0.05]. Conversely, the total pressor response was augmented in both wild-type [34.2 mmHg (SD 29.2) x 3 min, P < 0.05 vs. NS] and ET(B) sl/sl rats [49.1 mmHg (SD 11.8) x 3 min, P < 0.05 vs. NS] by ABT-627. Blockade of ET(B) receptors in Sprague-Dawley rats caused an increase in basal MAP that was enhanced by HS and lowered by mixed ET(A)/ET(B) receptor antagonism; none of these treatments, however, had any effect on the pressor response. These data demonstrate that increasing endogenous ET-1 suppresses the pressor response to acute stress through ET(A) receptor activation in a genetic model of ET-1-dependent hypertension. These results are consistent with reports that ET-1 can attenuate sympathetically mediated responses.  相似文献   

5.
目的对感觉神经损伤性盐敏感性高血压大鼠的心肌、肾脏组织中的血管紧张素Ⅱ1型受体(AT1R)在mRNA和受体水平的表达进行检测,探讨AT1R与盐敏感性高血压的关系。方法用乳鼠皮下注射辣椒辣素法建立模型。哺乳期后,大鼠被随机分成4组:对照+正常盐饮食组(CON-NS);对照+高盐饮食组(CON-HS);辣椒辣素+正常盐饮食组(CAP-NS);辣椒辣素+高盐饮食组(CAP-HS)。至7周龄(分组饲养后第4周)处死大鼠,免疫组织化学方法和反转录-聚合酶链式反应(RT-PCR)分别检测大鼠心肌和肾脏AT1R蛋白,以及AT1 R mRNA的表达。结果①Wistar大鼠在给予不同程度的感觉神经损伤和饲料干预后,各组大鼠尾部收缩压均有明显增加,最终CAP-HS组的尾收缩压显著高于其他三组(P〈0.01)。②免疫组织化学结果显示,CAP-HS组组织有显著的AT1R蛋白表达(P〈0.01);CON-HS组肾脏、心肌组织中AT1R蛋白表达高于CON-NS组(P〈0.05)。③RT-PCR检测基因表达,与对照组CON-NS相比,实验组CAP-HS的AT1R mRNA表达显著升高(P〈0.01);CON-HS组肾脏、心肌组织中AT1 R mRNA表达有显著性(P〈0.05)。结论感觉神经损伤性盐敏感性高血压大鼠心、肾AT1R表达升高,AT1R表达水平的差异可能与盐敏感性高血压的形成有关。  相似文献   

6.
7.
To investigate the possible physiological significance of dietary cardiac glycosides in blood pressure regulation, the blood pressure of normal Sprague Dawley rats raised on a regular diet, which naturally contains large amounts of Na+-pump inhibitors, was compared with that of rats on a purified synthetic diet, which contains no Na+-pump specific inhibitors, and with that of rats on a synthetic diet supplemented with 10 microg x mL(-1) ouabain or 10 microg x mL- convallatoxin in the drinking water. After 6 weeks on the synthetic diet, the systolic blood pressure in the synthetic diet group was significantly elevated (145 +/- 5 vs. 128 +/- 4 mmHg, P < 0.05). At 10 weeks it reached a plateau (154 +/- 3 vs. 122 +/- 3 mmHg, P < 0.05). Plasma renin activity and Na+ level were significantly higher in animals fed synthetic diets than in the regular diet group (P < 0.01). Administration of either losartan or lisinopril or a switch to a low salt synthetic diet (0.03% sodium) normalized the synthetic diet-induced high blood pressure. Supplementation of the synthetic diet with the cardiac glycosides delayed the onset of the increase in blood pressure for 4 weeks. Plasma aldosterone levels were approximately doubled in the cardiac glycoside-treated groups. Higher plasma Na+ levels and hematocrit values present in the synthetic diet group were normalized by the glycoside supplements. These results suggest that supplemental dietary cardiac glycosides exert bidirectional effects on blood pressure regulation through actions that modulate extracellular fluid and electrolyte balance.  相似文献   

8.
Experiments were designed to determine the influence of endothelin A (ET(A)) receptors on the pressor response to acute environmental stress in Dahl salt-resistant (DR) and Dahl-sensitive (DS) rats. Mean arterial pressure (MAP) was chronically monitored by telemetry before and after treatment with the selective ET(A) receptor antagonist ABT-627. Rats were restrained and subjected to pulsatile air jet stress (3 min). In untreated animals, the total pressor response (area under the curve) to acute stress was not different between DR vs. DS rats (8.1 +/- 1.7 vs. 15.6 +/- 2.6 mmHg x 3 min, P = 0.10). Conversely, treatment with ABT-627 potentiated the total pressor response only in DR rats (36.3 +/- 6.2 vs. 22.6 +/- 5.9 mmHg x 3 min, DR vs. DS, P < 0.05). Treatment with ABT-627 allowed greater responses in anesthetized DR rats to exogenous phenylephrine (1-4 microg/kg) during ganglionic blockade (P < 0.05) and produced a significant increase in plasma norepinephrine at baseline and during stress in conscious DR rats compared with untreated animals (P < 0.05). ET(A) receptor blockade had no effect on these responses in DS rats. Our results suggest that endothelin-1 can inhibit alpha-adrenergic-mediated effects in DR, but not DS rats, consistent with the hypothesis that ET(A) receptor activation functions to reduce sympathetic nerve activity and responses in vascular smooth muscle to sympathetic stimulation.  相似文献   

9.
The present study determined whether early loss of estrogen influences salt-sensitive changes in blood pressure, renal injury, and cardiac hypertrophy as well as the effects on the circulating renin-angiotensin-aldosterone system (RAAS) in the hypertensive female mRen(2). Lewis strain. Ovariectomy (OVX) of heterozygous mRen(2). Lewis rats on a normal salt (NS) diet (0.5% sodium) increased systolic blood pressure from 137+/-3 to 177+/-5 mmHg (P<0.01) by 15 wk but did not show any changes in cardiac-to-body weight index (CI), proteinuria, or creatinine clearance. Maintenance with a high-sodium (HS) diet (4%) increased blood pressure (203+/-4 mmHg, P<0.01), proteinuria (3.5+/-0.3 vs. 6.4+/-0.7 mg/day, P<0.05), and CI (4.0+/-0.1 vs. 5.2+/-0.1 mg/kg, P<0.01) but decreased creatinine clearance (0.89+/-0.15 vs. 0.54+/-0.06 ml/min, P<0.05). OVX exacerbated the effects of salt on the degree of hypertension (230+/-5 mmHg), CI (5.6+/-0.2 mg/kg), and proteinuria (13+/-3.0 mg/day). OVX increased the urinary excretion of aldosterone approximately twofold in animals on the NS diet (3.8+/-0.5 vs. 6.6+/-0.5 ng.mg creatinine-1.day-1, P<0.05) and HS diet (1.4+/-0.2 vs. 4.5+/-1.0 ng.mg creatinine-1.day-1, P<0.05). Circulating renin, angiotensin-converting enzyme, and angiotensin II were also significantly increased in the OVX group fed a HS diet. These results reveal that the protective effects of estrogen apart from the increase in blood pressure were only manifested in the setting of a chronic HS diet and suggest that the underlying sodium status may have an important influence on the overall effect of reduced estrogen.  相似文献   

10.
The purpose of this study was to determine the role of endothelin in mediating the renal hemodynamic and arterial pressure changes observed during chronic ANG II-induced hypertension. ANG II (50 ng x kg(-1) x min(-1)) was chronically infused into the jugular vein by miniosmotic pump for 2 wk in male Sprague-Dawley rats with and without endothelin type A (ET(A))-receptor antagonist ABT-627 (5 mg x kg(-1) x day(-1)) pretreatment. Arterial pressure increased in ANG II rats compared with control rats (149 +/- 5 vs. 121 +/- 6 mmHg, P < 0.05, respectively). Renal expression of preproendothelin mRNA was increased by approximately 50% in both the medulla and cortex of ANG II rats. The hypertensive effect of ANG II was completely abolished in rats pretreated with the ET(A)-receptor antagonist (114 +/- 5 mmHg, P < 0.05). Glomerular filtration rate was decreased by 33% in ANG II rats, and this response was attenuated in rats pretreated with ET(A)-receptor antagonist. These data indicate that activation of the renal endothelin system by ANG II may play an important role in mediating chronic renal and hypertensive actions of ANG II.  相似文献   

11.
Evidence for endothelin (ET) involvement in the control of fluid volume balance and arterial pressure has been derived in part from the observations that rats lacking the ET(B) receptor develop hypertension when placed on a high-salt (HS) diet. The present study was designed to determine the effect of superoxide on salt-induced hypertension in male and female ET(B)-deficient (sl/sl) and wild-type control (wt) rats. After 14 days on a HS (8% NaCl) diet, female sl/sl rats had significantly elevated arterial pressure (183 +/- 2 mm Hg, tail cuff) compared with female wt rats (134 +/- 2 mm Hg). The response to a HS diet was lower in male sl/sl rats (166 +/- 6 mm Hg) yet was significantly greater than that in male wt controls (135 +/- 3 mm Hg). Separate groups of male and female sl/sl and wt rats were given tempol (1 mM in drinking water) during HS treatment. Arterial pressures were 149 +/- 5 mm Hg in male and 143 +/- 3 mm Hg in female sl/sl rats treated with tempol, values that were similar to those of controls on a normal salt diet. After 14 days, however, male and female sl/ sl rats recovered from the blood pressure-lowering effects of tempol. On Day 15, arterial pressures in female sl/sl rats on a HS diet were 160 +/- 6 mm Hg and 177 +/- 6 mm Hg in tempol-treated and untreated groups, respectively. In male sl/sl rats, arterial pressures were 155 +/- 3 mm Hg and 165 +/- 5 mm Hg in tempol-treated and untreated groups, respectively. On Day 15, no differences among groups with or without tempol were observed in plasma thiobarbituric acid-reactive substance (TBARS) concentrations or in urinary excretion of TBARS. Plasma ET-1 concentrations were significantly higher in female vs. male sl/sl rats. These results indicate that the early stages of salt-dependent hypertension produced by ET(B) receptor deficiency are dependent on superoxide and that the elevated pressure in the female rats may be due to elevated circulating levels of ET-1.  相似文献   

12.
Activation of renal mechanosensory nerves is enhanced by high and suppressed by low sodium dietary intake. Afferent renal denervation results in salt-sensitive hypertension, suggesting that activation of the afferent renal nerves contributes to water and sodium balance. Another model of salt-sensitive hypertension is the endothelin B receptor (ETBR)-deficient rat. ET and its receptors are present in sensory nerves. Therefore, we examined whether ET receptor blockade altered the responsiveness of the renal sensory nerves. In anesthetized rats fed high-sodium diet, renal pelvic administration of the ETBR antagonist BQ-788 reduced the afferent renal nerve activity (ARNA) response to increasing renal pelvic pressure 7.5 mmHg from 26+/-3 to 9+/-3% and the PGE2-mediated renal pelvic release of substance P from 9+/-1 to 3+/-1 pg/min. Conversely, in rats fed low-sodium diet, renal pelvic administration of the ETAR antagonist BQ-123 enhanced the ARNA response to increased renal pelvic pressure from 9+/-2 to 23+/-6% and the PGE2-mediated renal pelvic release of substance P from 0+/-0 to 6+/-1 pg/min. Adding the ETAR antagonist to ETBR-blocked renal pelvises restored the responsiveness of renal sensory nerves in rats fed a high-sodium diet. Adding the ETBR antagonist to ETAR-blocked pelvises suppressed the responsiveness of the renal sensory nerves in rats fed a low-sodium diet. In conclusion, activation of ETBR and ETAR contributes to the enhanced and suppressed responsiveness of renal sensory nerves in conditions of high- and low-sodium dietary intake, respectively. Impaired renorenal reflexes may contribute to the salt-sensitive hypertension in the ETBR-deficient rat.  相似文献   

13.
The objectives were to determine if ANG II-induced hypertension is maintained by activation of endothelin type A (ET(A)) receptors by endogenous ET-1 and if this effect is influenced by salt intake. Male rats were maintained on high sodium intake (HS; 6 meq/day) or on normal sodium intake (NS; 2 meq/day). Hypertension was produced by intravenous infusion of ANG II (5 ng/min) for 15 days. Five-day oral dosing with the selective ET(A)-receptor antagonist ABT-627 (~2 mg. kg(-1). day(-1)) reduced mean arterial pressure (MAP) to baseline levels in rats on HS receiving ANG II infusion, but it did not affect MAP in normotensive HS controls. In rats on NS, ABT-627 only transiently decreased MAP in rats receiving ANG II and slightly reduced MAP in normotensive controls. ABT-627 produced mild retention of sodium and water in NS rats receiving ANG II, but not in any other group. These results indicate that ET-1 plays a role in ANG II-induced hypertension via activation of ET(A) receptors and that this role is more prominent in rats on HS.  相似文献   

14.
Studies in experimental animals and younger women suggest a protective role for estrogen; however, clinical trials may not substantiate this effect in older females. Therefore, the present study assessed the outcome of ovariectomy in older mRen2. Lewis rats subjected to a high-salt diet for 4 wk. Intact or ovariectomized (OVX, 15 wk of age) mRen2. Lewis rats were aged to 60 wk and then placed on a high-salt (HS, 8% sodium chloride) diet for 4 wk. Systolic blood pressures were similar between groups [OVX 169 +/- 6 vs. Intact 182 +/- 7 mmHg; P = 0.22] after the 4-wk diet; however, proteinuria [OVX 0.8 +/- 0.2 vs. Intact 11.5 +/- 2.6 mg/mg creatinine; P < 0.002, n = 6], renal interstitial fibrosis, glomerular sclerosis, and tubular casts were lower in OVX vs. Intact rats. Kidney injury molecule-1 mRNA, a marker of tubular damage, was 53% lower in the OVX HS group. Independent from blood pressure, OVX HS rats exhibited significantly lower cardiac (24%) and renal (32%) hypertrophy as well as lower C-reactive protein (28%). Circulating insulin-like growth factor-I (IGF-I) levels were not different between the Intact and OVX groups; however, renal cortical IGF-I mRNA and protein were attenuated in OVX rats [P < 0.05, n = 6]. We conclude that ovariectomy in the older female mRen2. Lewis rat conveys protection against salt-dependent increase in renal injury.  相似文献   

15.
A correlation exists between obesity and hypertension. In the currently available models of diet-induced obesity, the treatment of rats with a high fat (HF) diet does not begin until adulthood. Our aim was to develop and characterize a model of pre-pubescent obesity-induced hypertension. Male Sprague-Dawley rats were fed a HF diet (35% fat) for 10 weeks, beginning at age 3 weeks. Blood pressure was measured by tail-cuff, and a terminal blood sample was obtained to measure fasting blood glucose, insulin, plasma renin, aldosterone, thiobarbitutic acid reactive substances (TBARS), and free 8-isoprostanes levels. The vascular reactivity in the aorta was assessed using a myograph. Blood pressure was increased in rats fed the HF diet (HF, 161 +/- 2 mm Hg vs. control, 137 +/- 2 mm Hg, P < 0.05). Blood glucose (HF, 155 +/- 4 mg/dL vs. control, 123 +/- 5 mg/dL, P < 0.05), insulin (HF, 232 +/- 63 pM vs. control, 60 +/- 11 pM, P < 0.05), TBARS (expressed as nM of malondialdehyde [MDA]/ml [HF, 1.8 +/- 0.37 nM MDA/ml vs. control 1.05 +/- 0.09 nM MDA/ml, P < 0.05]), and free 8-isoprostanes (HF, 229 +/- 68 pg/ml vs. control, 112 +/- 9 pg/ml, P < 0.05) levels were elevated in the HF diet group. Interestingly, plasma renin and aldosterone levels were not different between the groups. The maximum vasoconstriction to phenylephrine (10(-4) M) was increased in the HF diet group (HF, 26.1 +/- 1.5 mN vs. control 22.3 +/- 1.2 mN, P < 0.05). In conclusion, pre-pubescent rats become hypertensive and have increased oxidative stress and enhanced vasoconstriction when fed a HF diet. Surprisingly, this occurs without the increase in renin or aldosterone levels seen in the adult models of diet-induced obesity.  相似文献   

16.
To determine the role of endothelin-1 (ET-1) and its receptors in the regulation of calcitonin gene-related peptide (CGRP) release, male Wistar rats were divided into six groups and subjected to the following treatments for 1 wk with or without ABT-627 (an ET(A) receptor antagonist, 5 mg.kg(-1).day(-1) in drinking water) or A-192621 (an ET(B)-receptor antagonist, 30 mg.kg(-1).day(-1) by oral gavage): control (Con), ET-1 (5 ng.kg(-1).min(-1) iv), Con + ABT-627, Con + A-192621, ET-1 + ABT-627, and ET-1 + A-192621. Baseline mean arterial pressure (MAP, mmHg) was higher (P < 0.05) in Con + A-192621 (122 +/- 4) and ET-1 + A-192621 (119 +/- 4) groups compared with Con (104 +/- 6), ET1 (106 +/- 3), Con + ABT-627 (104 +/- 3), and ET1 + ABT-627 (100 +/- 3) groups. Intravenous administration of CGRP(8-37) (a CGRP receptor antagonist, 1 mg/kg) increased MAP (P < 0.05) in ET-1 (13 +/- 1), Con + A-192621 (12 +/- 1), and ET-1 + A-192621 (15 +/- 3) groups compared with Con (4 +/- 1), Con-ABT-627 (4 +/- 1), and ET-1 + ABT-627 (5 +/- 1) groups. Plasma CGRP levels (in pg/ml) were increased (P < 0.05) in ET-1 (57.5 +/- 6.1), Con + A-192621 (53.9 +/- 3.4), and ET-1 + A-192621 (60.4 +/- 3.0) groups compared with Con (40.4 +/- 1.6), Con + ABT-627 (40.0 +/- 2.9), and ET-1 + ABT-627 (42.6 +/- 1.9) groups. Plasma ET-1 levels (in pg/ml) were higher (P < 0.05) in ET-1 (2.8 +/- 0.2), ET-1 + ABT-627 (3.2 +/- 0.4), Con + A-192621 (3.3 +/- 0.4), and ET-1 + A-192621 (4.6 +/- 0.3) groups compared with Con (1.1 +/- 0.2) and Con-ABT-627 (1.3 +/- 0.2) groups. Therefore, our data show that ET-1 infusion leads to increased CGRP release via activation of the ET(A) receptor, which plays a compensatory role in preventing ET-1-induced elevation in blood pressure.  相似文献   

17.
Molecular mechanisms of salt-sensitive (SS) hypertension related to renal inflammation have not been defined. We seek to determine whether a high-salt (HS) diet induces renal activation of NF-kappaB and upregulation of TNF-alpha related to the development of hypertension in Dahl SS rats. Six 8-wk-old male Dahl SS rats received a HS diet (4%), and six Dahl SS rats received a low-sodium diet (LS, 0.3%) for 5 wk. In the end, mean arterial pressure was determined in conscious rats by continuous monitoring through a catheter placed in the carotid artery. Mean arterial pressure was significantly higher in the HS than the LS group (177.9 +/- 3.7 vs. 109.4 +/- 2.9 mmHg, P < 0.001). There was a significant increase in urinary albumin secretion in the HS group compared with the LS group (22.3 +/- 2.6 vs. 6.1 +/- 0.7 mg/day; P < 0.001). Electrophoretic mobility shift assay demonstrated that the binding activity of NF-kappaB p65 proteins in the kidneys of Dahl SS rats was significantly increased by 53% in the HS group compared with the LS group (P = 0.007). ELISA indicated that renal protein levels of TNF-alpha, but not IL-6, interferon-gamma, and CCL28, were significantly higher in the HS than the LS group (2.3 +/- 0.8 vs. 0.7 +/- 0.2 pg/mg; P = 0.036). We demonstrated that plasma levels of TNF-alpha were significantly increased by fivefold in Dahl SS rats on a HS diet compared with a LS diet. Also, we found that increased physiologically relevant sodium concentration (10 mmol/l) directly stimulated NF-kappaB activation in cultured human renal proximal tubular epithelial cells. These findings support the hypothesis that activation of NF-kappaB and upregulation of TNF-alpha are the important renal mechanisms linking proinflammatory response to SS hypertension.  相似文献   

18.
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.  相似文献   

19.
Dahl salt-sensitive (SS) and consomic, salt-resistant SS-13(BN) rats possess substantial differences in blood pressure salt-sensitivity even with highly similar genetic backgrounds. The present study examined whether increased oxidative stress, particularly H2O2, in the renal medulla of SS rats contributes to these differences. Blood pressure was measured using femoral arterial catheters in three groups of rats: 1) 12-wk-old SS and consomic SS-13(BN) rats fed a 0.4% NaCl diet, 2) SS rats fed a 4% NaCl diet and chronically infused with saline or catalase (6.9 microg x kg(-1) x min(-1)) directly into the renal medulla, and 3) SS-13(BN) fed high salt (4%) and infused with saline or H2O2 (347 nmol x kg(-1) x min(-1)) into the renal medullary interstitium. After chronic blood pressure measurements, renal medullary interstitial H2O2 concentration ([H2O2]) was collected by microdialysis and analyzed with Amplex red. Blood pressure and [H2O2] were both significantly higher in SS (126 +/- 3 mmHg and 145 +/- 17 nM, respectively) vs. SS-13(BN) rats (116 +/- 2 mmHg and 56 +/- 14 nM) fed a 0.4% diet. Renal interstitial catalase infusion significantly decreased [H2O2] (96 +/- 41 vs. 297 +/- 52 nM) and attenuated the hypertension (146 +/- 2 mmHg catalase vs. 163 +/- 4 mmHg saline) in SS rats after 5 days of high salt (4%). H2O2 infused into the renal medulla of consomic SS-13(BN) fed high salt (4%) for 7 days accentuated the salt sensitivity (145 +/- 2 mmHg H2O2 vs. 134 +/- 1 mmHg saline). [H2O2] was also increased in the treated group (83 +/- 1 nM H2O2 vs. 44 +/- 9 nM saline). These data show that medullary production of H2O2 may contribute to salt-induced hypertension in SS rats and that chromosome 13 of the Brown Norway contains gene(s) that protect against renal medullary oxidant stress.  相似文献   

20.
目的研究感觉神经损伤性盐敏感性高血压大鼠左心室肥厚与血压的关系。方法建立感觉神经损伤性盐敏感性高血压大鼠模型,计算左心室相对重量,观察左心室组织病理学形态特点。结果感觉神经损伤性盐敏感性高血压大鼠CAP-HS组收缩压明显升高,左心室明显增重,心肌细胞肥大,肌纤维排列紊乱,心肌间质纤维化,其左心室重量指数明显升高(P〈0.01);CON-HS组大鼠左心室重量指数也有升高(P〈0.05)。结论感觉神经损伤性盐敏感性高血压大鼠左心室增重,心肌组织病理学改变与血压升高和摄入高盐有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号