首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic axes and cotyledons of three soybean ( Glycine max L. cv. Gudzon) seed lots designated as "normal", "naturally aged" and "acceleratedly aged" were analyzed for their organic free radical contents. No signals of free radicals were found in ESR spectra from cotyledonary material of the three samples investigated. High levels of organic free radicals were observed in the embryonic axes. There were significant differences in the free radical contents of the embryonic axes: the relative values of free radicals were 100, 190 and 170% for samples aged normally, naturally and in an accelerated manner, respectively. These results point to the physiological role of the embryonic axes during natural or accelerated aging of seeds, notwithstanding that the axis is a small part as compared to the cotyledons. It is suggested that lipid peroxidation in embryonic axes may play an important role in the seed deterioration during aging.  相似文献   

2.
Smooth microsomal membranes were isolated from axes of soybean (Glycine max L. Merr.) seeds at the dehydration-tolerant (6 hours of imbibition) and dehydration-susceptible (36 hours of imbibition) stages of development and were exposed to free radicals in vitro using xanthine-xanthine oxidase as a free radical source. Wide angle x-ray diffraction studies indicated that the lipid phase transition temperature of the microsomal membranes from the dehydration-tolerant axes increased from 7 to 14°C after exposure to free radicals, whereas those from the dehydration-susceptible axes increased from 9 to 40°C by the same free radical dose. The increased phase transition temperature was associated with a decrease in the phospholipid:sterol ratio, and an increase in the free fatty acid:phospholipid ratio. There was no significant change in total fatty acid saturation, which indicated that free radical treatment induced deesterification of membrane phospholipid, and not a change in fatty acid saturation. Similar compositional and structural changes have been previously observed in dehydration-injured soybean axes suggesting that dehydration may induce free radical injury to cellular membranes. Further, these membranes differ in their susceptibility to free radical injury, presumably reflecting compositional differences in the membrane since these membranes were exposed to free radicals in the absence of cytosol.  相似文献   

3.
The ability of seeds to withstand dehydration indicates that their membranes may maintain structural integrity even when dry. Analysis of polar lipids (the principal lipidic constituents of the membranes) from soybean seeds (Glycine-max (L.) Merr.) by X-ray diffraction indicated that even in the dehydrated state the lipids retained a lamellar (bilayer) configuration. As the degree of hydration was raised, evidence of some structural alteration (apparent as an abrupt increase in bilayer spacing) was obtained from diffraction patterns of both the extracted lipid and particles of seed tissue. In seed tissue this increase in bilayer spacing occurred at a hydration level just above that at which free water could be detected by nuclear-magnetic-resonance analysis. The water content at which the increase in bilayer spacing occurred was higher in the seed tissue than in the extracted polar lipids, probably because other cell components restricted the availability of free water in the seed.Abbreviation NMR nuclear-magnetic resonance  相似文献   

4.
Antioxidant lipoate and tissue antioxidants in aged rats   总被引:6,自引:0,他引:6  
Oxidative metabolism produces free radicals that must be removed from the cellular environment for the cell to survive. The levels of nonenzymic antioxidants involved in the elimination of free radicals were investigated in an attempt to correlate any changes in the levels of enzymic antioxidants during aging with changes in free radical mediated cellular damage. Antioxidants were measured in liver and kidney of young and aged rats with respect to DL-alpha-lipoic acid supplemented rats. In both organs lipid peroxidation damage (a marker of free radical mediated damage) increased with age, and a significant decrease in antioxidant systems was observed. Moreover, DL-alpha-lipoic acid treated aged rats showed a decrease in the level of lipid peroxides and an increase in the antioxidant status. The results of this study provide evidence that DL-alpha-lipoic acid treatment can improve antioxidants during aging and minimize the age-associated disorders in which free radicals are the major cause.  相似文献   

5.
The aim of this study was to investigate whether there is a relationship between hydration of the embryo axes and cotyledons and the resumption of the oxidative metabolism in both organs of germinating seeds of pea (Pisum sativum L. cv. Piast). Nuclear magnetic resonance (1H-NMR) spectroscopy and imaging were used to study temporal and spatial water uptake and distribution in pea seeds. The observations revealed that water penetrates into the seed through the hilum, micropyle and embryo axes, and cotyledons hydrate to different extents. Thus, inhomogeneous water distribution may influence the resumption of oxidative metabolism. Electron paramagnetic resonance (EPR) measurements showed that seed germination was accompanied by the generation of free radicals with g1 and g2 values of 2.0032 and 2.0052, respectively. The values of spectroscopic splitting coefficients suggest that they are quinone radicals. The highest content of free radicals was observed in embryo axes immediately after emergence of the radicle. Glutathione content decreased during the entire germination period in both embryo axes and cotyledons. A different profile was observed for ascorbate, with significant increases in embryo axes, coinciding with radicle protrusion. Electrophoretic analysis showed that superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) were present in dry seeds and were activated later during germination, especially in embryo axes. The presence of all antioxidative enzymes as well as low molecular antioxidants in dry seeds allowed the antioxidative machinery to be active as soon as the enzymes were reactivated by seed imbibition. The observed changes in free radical levels, antioxidant contents and enzymatic activities in embryo axes and cotyledons appear to be more closely related to metabolic and developmental processes associated with preparation for germination, and do not correspond directly to the hydration of the tissues.  相似文献   

6.
The present study was conducted to examine the changes in some key metabolites in drought-stressed sunflower plants supplied with glycine betaine externally. Imposition of drought stress at the vegetative or reproductive growth stages decreased the plant dry matter production and increased the accumulation of organic solutes (glycine betaine, proline, soluble proteins, free amino acids and soluble sugars) in two sunflower lines, i.e., Glushan-98 and Suncross. In general, decrease in dry matter production and increase in the endogenous levels of organic solutes, were more pronounced when drought stress applied at the vegetative stage than at the reproductive stage. Glycine betaine applied as a pre-sowing seed treatment was not found to be effective in reducing the negative effects of drought stress in sunflower plants. Foliar application of GB further enhanced the leaf endogenous levels of GB, soluble proteins and total soluble sugars in drought stressed plants without exerting any negative effects on other osmotica. However, this GB-induced increase in endogenous levels of organic solutes was found to be not associated with plant dry matter production under stress conditions.  相似文献   

7.
Soybean (Glycine max) was grown at ambient and enhanced carbon dioxide (CO2, + 250 μL L?1 above ambient) with and without the presence of a C3 weed (lambsquarters, Chenopodium album L.) and a C4 weed (redroot pigweed, Amaranthus retroflexus L.), in order to evaluate the impact of rising atmospheric carbon dioxide concentration [CO2] on crop production losses due to weeds. Weeds of a given species were sown at a density of two per metre of row. A significant reduction in soybean seed yield was observed with either weed species relative to the weed‐free control at either [CO2]. However, for lambsquarters the reduction in soybean seed yield relative to the weed‐free condition increased from 28 to 39% as CO2 increased, with a 65% increase in the average dry weight of lambsquarters at enhanced [CO2]. Conversely, for pigweed, soybean seed yield losses diminished with increasing [CO2] from 45 to 30%, with no change in the average dry weight of pigweed. In a weed‐free environment, elevated [CO2] resulted in a significant increase in vegetative dry weight and seed yield at maturity for soybean (33 and 24%, respectively) compared to the ambient CO2 condition. Interestingly, the presence of either weed negated the ability of soybean to respond either vegetatively or reproductively to enhanced [CO2]. Results from this experiment suggest: (i) that rising [CO2] could alter current yield losses associated with competition from weeds; and (ii) that weed control will be crucial in realizing any potential increase in economic yield of agronomic crops such as soybean as atmospheric [CO2] increases.  相似文献   

8.
高胆固醇血兔红细胞变形能力的改变及其防治   总被引:1,自引:0,他引:1  
本实验利用激光衍射法研究正常家兔和高胆固醇血兔的红细胞变形能力及衍射图的改变。结果表明:高胆固醇血兔在喂胆固醇粉4周后其红细胞的变形能力和红细胞衍射图开始发生明显改变。血清胆固醇水平增加所引起的脂质过氧化产物的异常增高和脂质过氧化作用致使红细胞膜硬度的增加是导致红细胞变形能力恶化的重要原因。由于黑茶的抗氧化和阻断脂质过氧化物连锁反应的作用,口服黑茶可以有效地改善红细胞的变形能力。  相似文献   

9.
Black gram [Vigna mungo (L.) Hepper] cv. IPU 94 plants grown in sand culture with deficient zinc (0.1 μM Zn) nutrition and those deprived of normal (1 μM) Zn supply at the initiation of flowering, showed decrease in dry matter production and especially seed yield. These plants showed a decrease in the size of anthers and stigmatic heads, pollen producing capacity of the anthers and stigmatic exudations. Zn deficiency caused structural alterations in exine and retarded germination of pollen grains and tube growth. The pollen extracts and stigmatic exudates of the Zn-deficient plants showed increase in activity of acid phosphatase isoforms and inhibition of esterase isoforms. Zn deficiency led to decrease in number of pods, seeds per pod and seed mass, altered seed coat topography and reduced seeds germinability. Low seed yield under Zn deficiency is attributed to a role of Zn in pollen function, as also in pollen-pistil interaction conducive to fertilization and development of seeds.  相似文献   

10.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

11.
The changes in several antioxidants as well as in the level of C-centered free radicals and thiobarbituric acid reactive substances (TBARS) were studied in seeds of Araucaria bidwillii Hook desiccated to 37%, 28% and 21% moisture content. The lowest-safe moisture content for the seedling establishment was 37%. The embryo, besides double amounts of free radicals, showed higher levels of both enzymatic and non-enzymatic antioxidants than endosperm. Lutein decreased in both organs whereas alpha-tocopherol values were not affected by desiccation. In the embryo at 37% seed moisture content the antioxidant defense system increased giving rise to a decrease in free radicals. Beyond this point, free radicals and TBARS increased in agreement with the umpiring of the ascorbate/glutathione cycle by the decrease in reduced glutathione and glutathione reductase activity (GR, EC 1.6.4.2). At 21% moisture GR decreased. In the endosperm during desiccation, the consumption of ascorbate, total glutathione and lutein prevented the rise in free radicals and TBARS till 28% moisture, at which an increase in oxidized glutathione was also observed.  相似文献   

12.
大豆肽体外抗氧化活性研究   总被引:4,自引:0,他引:4  
研究大豆肽的体外抗氧化的作用。采用邻二氮菲-Fe^2+检测大豆肽对羟自由基(·OH)的清除作用,邻苯三酚检测大豆肽对超氧阴离子(·O2^-)的清除作用,用硫代巴比妥酸法测定小鼠肝匀浆丙二醛(MDA)的含量,用比色法测定小鼠红细胞溶血度,来研究大豆肽的抗氧化效果。结果表明:大豆肽可以清除·OH和·O2^-,抑制·OH所致的丙二醛的产生,减少H2O2所致的红细胞溶血,在2~15g/L内均具有明显的量效关系。表明大豆肽在体外具有明显的抗氧化效果。  相似文献   

13.
The composition of seed storage proteins is regulated by sulfur and nitrogen supplies. Under conditions of a low sulfur-to-nitrogen ratio, accumulation of the β-subunit of β-conglycinin, a sulfur-poor seed storage protein of soybean (Glycine max [L.] Merr.), is elevated, whereas that of glycinin, a sulfur-rich storage protein, is reduced. Using transgenic Arabidopsis thaliana [L.] Heynh., it was found that the promoter from the gene encoding the β-subunit of β-conglycinin up-regulates gene expression under sulfur deficiency and down-regulates gene expression under nitrogen deficiency. To obtain an insight into the metabolic control of this regulation, the concentrations of metabolites related to the sulfur assimilation pathway were determined. Among the metabolites, O-acetyl-l-serine (OAS), one of the precursors of cysteine biosynthesis, accumulated to higher levels under low-sulfur and high-nitrogen conditions in siliques of transgenic A. thaliana. The pattern of OAS accumulation in response to various levels of sulfur and nitrogen was similar to that of gene expression driven by the β-subunit promoter. Elevated levels of OAS accumulation were also observed in soybean cotyledons cultured under sulfur deficiency. Moreover, OAS applied to in-vitro cultures of immature soybean cotyledons under normal sulfate conditions resulted in a high accumulation of the β-subunit mRNA and protein, whereas the accumulation of glycinin was reduced. These changes were very similar to the responses observed under conditions of sulfur deficiency. Our results suggest that the level of free OAS mediates sulfur- and nitrogen-regulation of soybean seed storage-protein composition. Received: 6 February 1999 / Accepted: 16 March 1999  相似文献   

14.
The EPR signal recorded in reaction medium containing L-lysine and methylglyoxal is supposed to come from the anion radical (semidione) of methylglyoxal and cation radical of methylglyoxal dialkylimine. These free radical inter-mediates might be formed as a result of electron transfer from dialkylimine to methylglyoxal. The EPR signal was observed in a nitrogen atmosphere, whereas only trace amounts of free radicals were registered under aerobic conditions. It has been established that the decay of methylglyoxal anion radical on aeration of the medium is inhibited by superoxide dismutase. Using the methods of EPR spectroscopy and lucigenin-dependent chemiluminescence, it has been shown that nonenzymatic generation of free radicals including superoxide anion radical takes place during the interaction of L-lysine with methylglyoxal — an intermediate of carbonyl stress — at different (including physiological) pH values. In the course of analogous reaction of L-lysine with malondialdehyde (the secondary product of the free radical derived oxidation of lipids), the formation of organic free radicals or superoxide radical was not observed.  相似文献   

15.
Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58–74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22–32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman–Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.  相似文献   

16.
Among the three subunits of [beta]-conglycinin, the 7S seed storage protein of soybean (Glycine max [L.] Merr.), expression of the [beta] subunit gene is unique. Accumulation of the [beta] subunit is enhanced in sulfate-deficient soybean plants, and its mRNA levels increase when abscisic acid (ABA) is added to the in vitro cotyledon culture medium. Transgenic Arabidopsis thaliana lines carrying a gene encoding the [beta] subunit was constructed and grown under sulfate deficiency. Accumulation of both [beta] subunit mRNA and protein were enhanced in developing A. thaliana seeds. Accumulation of one of the A. thaliana seed storage protein mRNAs was also enhanced by sulfate deficiency, although the response was weaker than that observed for the soybean [beta] subunit mRNA. When the aba1-1 or abi3-1 mutations were crossed into the transgenic A. thaliana line, accumulation of the [beta] subunit was significantly reduced, whereas accumulation of the A. thaliana seed storage protein was not greatly affected. These results indicate that soybean and A. thaliana share a common mechanism for response to sulfate deficiency and to ABA, although the sensitivity is different between the species. The transgenic A. thaliana carrying the [beta] subunit gene of [beta]-conglycinin will be a good system to analyze these responses.  相似文献   

17.
Concentrations of abscisic acid (ABA) and indole-3-acetic acid (IAA) in seed parts were determined during reproductive development of soybean plants (Glycine max [L.] Merr. cv `Chippewa 64'). The concentration of ABA and IAA changed independently in individual seed parts with time. Measurement of the level of ABA and IAA in whole seeds masked the changes which occurred in individual seed tissues. The concentration of ABA was generally highest and that of IAA was generally lowest in the embryonic axis of soybean seeds. In the testa, the IAA concentration was generally highest while the ABA concentration was generally the lowest compared to other parts of the seed.  相似文献   

18.
There is a sudden increase in free radical levels, measured from the electron spin resonance (ESR) signal, in cut carnation ( Dianthus caryophyllus L. cv. Ember) petal powders between the end of blooming and the onset of withering. There is also an increase in the microsomal generation of superoxide radicals (measured from the ESR-Tiron signal). These increases correspond to a decrease of polar lipids content, a slight increase in peroxides and to the onset of a sudden efflux of electrolytes. A correlation is established between free radical production and the loss of membrane integrity. Catalase (EC 1.11.1.6) activity increases progressively until complete withering and an hypothesis concerning the action of this enzyme is proposed. The changes in superoxide dismutase (EC 1.15.1.1) activity appear to be independent of the amplitude of the ESR-Tiron signal.  相似文献   

19.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

20.
Iu A Vladimirov 《Biofizika》1987,32(5):830-844
The results obtained mainly by the author and coworkers are summarized. One efficient method to detect free radicals in biological samples is chemiluminescence (CL). In the absence of activators CL of membraneous systems is due to lipid peroxide free radicals, whereas in the presence of luminol it is initiated by oxygen radicals. Low levels of free radicals in the cells and blood plasma are maintained by antioxidants, enzymes included. Ferrous ions increase free radical concentrations in the cells and tissues. Deleterious action of hydroxyl radicals is the result of the breakage of DNA strains and of lipid peroxidation (LPO). The latter reaction brings about the damage of the membrane barriers due to a decrease of the electrical stability of the membrane lipid bilayer and "self-breakdown" of the membranes by potential differences produced in the living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号