首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selection pressures by which mating preferences for ornamental traits can evolve in genetically monogamous mating systems remain understudied. Empirical evidence from several taxa supports the prevalence of dual‐utility traits, defined as traits used both as armaments in intersexual selection and ornaments in intrasexual selection, as well as the importance of intrasexual resource competition for the evolution of female ornamentation. Here, we study whether mating preferences for traits used in intrasexual resource competition can evolve under genetic monogamy. We find that a mating preference for a competitive trait can evolve and affect the evolution of the trait. The preference is more likely to persist when the fecundity benefit for mates of successful competitors is large and the aversion to unornamented potential mates is strong. The preference can persist for long periods or potentially permanently even when it incurs slight costs. Our results suggest that, when females use ornaments as signals in intrasexual resource competition, males can evolve mating preferences for those ornaments, illuminating both the evolution of female ornamentation and the evolution of male preferences for female ornaments in monogamous species.  相似文献   

2.
Although sexual selection through female choice explains exaggerated male ornaments in many species, the evolution of the multicomponent nature of most sexual displays remains poorly understood. Theoretical models suggest that handicap signaling should converge on a single most informative quality indicator, whereas additional signals are more likely to be arbitrary Fisherian traits, amplifiers, or exploitations of receiver psychology. Male nuptial plumage in the highly polygynous red-collared widowbird (Euplectes ardens) comprises two of the commonly advocated quality advertisements (handicaps) in birds: a long graduated tail and red carotenoid coloration. Here we use multivariate selection analysis to investigate female choice in relation to male tail length, color (reflectance) of the collar, other aspects of morphology, ectoparasite load, display rate, and territory quality. The order and total number of active nests obtained are used as measures of male reproductive success. We demonstrate a strong female preference and net sexual selection for long tails, but marginal or no effects of color, morphology, or territory quality. Tail length explained 47% of male reproductive success, an unusually strong fitness effect of natural ornament variation. Fluctuating tail asymmetry was unrelated to tail length, and had no impact on mating success. For the red collar, there was negative net selection on collar area, presumably via its negative relationship with tail length. None of the color variables (hue, chroma, and brightness) had significant selection differentials, but a partial effect (selection gradient) of chroma might represent a color preference when tail length is controlled for. We suggest that the red collar functions in male agonistic interactions, which has been strongly supported by subsequent work. Thus, female choice targets only one handicap, extreme tail elongation, disregarding or even selecting against the carotenoid display. We discuss whether long tails might be better indicators of genetic quality than carotenoid pigmentation. As regards the evolution of multiple ornaments, we propose that multiple handicap signaling is stable not because of multiple messages but because of multiple receivers, in this case females and males.  相似文献   

3.
The costs of choice in sexual selection   总被引:15,自引:0,他引:15  
In Fisher's model of sexual selection female mating preferences are not subject to direct selection but evolve purely because they are genetically correlated with the favoured male trait. But when female choice is costly relative to random mating, for example in energy, time or predation risks, the evolution of female mating preference is subject also to direct selection. With costly female choice the set or line of equilibria found in models of Fisher's process no longer exists. On the line the male trait is under zero net selection, and there is no advantage for a female choosing a male with a more exaggerated character. Therefore any cost to choice causes choosiness to decline. In turn this lowers the strength of sexual selection and the male trait declines as well. So when Fisher's process is the sole force of sexual selection and female choice is costly, only transitory increases in female choice and the preferred male trait are possible. It has often been claimed that exaggerated male characters act as markers or revealers of the genetic quality of potential mates. If females choose their mates using traits that correlate with heritable viability differences then stable exaggeration of both female choice and the preferred male character is possible, even when female choice is costly. The offspring of choosy females have not only a Fisherian reproductive advantage but also greater viability. This suggests that in species with exaggerated male ornamentation, in which female choice is costly, it is likely that female mate choice will be for traits that correlate with male genetic quality.  相似文献   

4.
Why are traits that function as secondary sexual ornaments generally exaggerated in size compared to the naturally selected optimum, and not reduced? Because they deviate from the naturally selected optimum, traits that are reduced in size will handicap their bearer, and could thus provide an honest signal of quality to a potential mate. Thus if secondary sexual ornaments evolve via the handicap process, current theory suggests that reduced ornamentation should be as frequent as exaggerated ornamentation, but this is not the case. To try to explain this discrepancy, we analyze a simple model of the handicap process. Our analysis shows that asymmetries in costs of preference or ornament with regard to exaggeration and reduction cannot fully explain the imbalance. Rather, the bias toward exaggeration can be best explained if either the signaling efficacy or the condition dependence of a trait increases with size. Under these circumstances, evolution always leads to more extreme exaggeration than reduction: although the two should occur just as frequently, exaggerated secondary sexual ornaments are likely to be further removed from the naturally selected optimum than reduced ornaments.  相似文献   

5.
Costly female mating preferences for purely Fisherian male traits (i.e. sexual ornaments that are genetically uncorrelated with inherent viability) are not expected to persist at equilibrium. The indirect benefit of producing ‘sexy sons’ (Fisher process) disappears: in some models, the male trait becomes fixed; in others, a range of male trait values persist, but a larger trait confers no net fitness advantage because it lowers survival. Insufficient indirect selection to counter the direct cost of producing fewer offspring means that preferences are lost. The only well‐cited exception assumes biased mutation on male traits. The above findings generally assume constant direct selection against female preferences (i.e. fixed costs). We show that if mate‐sampling costs are instead derived based on an explicit account of how females acquire mates, an initially costly mating preference can coevolve with a male trait so that both persist in the presence or absence of biased mutation. Our models predict that empirically detecting selection at equilibrium will be difficult, even if selection was responsible for the location of the current equilibrium. In general, it appears useful to integrate mate sampling theory with models of genetic consequences of mating preferences: being explicit about the process by which individuals select mates can alter equilibria.  相似文献   

6.
Extravagant secondary sexual characters are assumed to have arisen and be maintained by sexual selection. While traits like horns, antlers and spurs can be ascribed to intrasexual competition, other traits such as extravagant feather ornaments, displays and pheromones have to be ascribed to mate choice. A number of studies have tested whether females exert selection on the size of male ornaments, but only some of these have recorded female preferences for the most extravagantly ornamented males. Here I demonstrate that female choice can be directly predicted from the relationship between the degree of fluctuating asymmetry and the size of a secondary sexual character. Fluctuating asymmetry is an epigenetic measure of the ability of individuals to cope with stress, and it occurs when an individual is unable to undergo identical development of an otherwise bilaterally symmetric trait on both sides of its body. There is a negative relationship between the degree of fluctuating asymmetry and the absolute size of an ornament in those bird species with a female preference for the largest male sex trait, while there is a flat or U-shaped relationship among species without a female preference. These results suggest that females prefer exaggerated secondary sexual characters if they reliably demonstrate the ability of males to cope with genetic and environmental stress. Some species may demonstrate a flat or U-shaped relationship between the degree of fluctuating asymmetry and the absolute size of an ornament because (i) the genetic variance in viability signalled by the secondary sex trait has been depleted; (ii) the secondary sex trait is not particularly costly and therefore does not demonstrate condition dependence; or because (iii) the sex traits can be considered arbitrary traits rather than characters reflecting good genes.  相似文献   

7.
Why are there so few small secondary sexual characters? Theoretical models predict that sexual selection should lead to reduction as often as exaggeration, and yet we mainly associate secondary sexual ornaments with exaggerated features such as the peacock's tail. We review the literature on mate choice experiments for evidence of reduced sexual traits. This shows that reduced ornamentation is effectively impossible in certain types of ornamental traits (behavioral, pheromonal, or color‐based traits, and morphological ornaments for which the natural selection optimum is no trait), but that there are many examples of morphological traits that would permit reduction. Yet small sexual traits are very rarely seen. We analyze a simple mathematical model of Fisher's runaway process (the null model for sexual selection). Our analysis shows that the imbalance cannot be wholly explained by larger ornaments being less costly than smaller ornaments, nor by preferences for larger ornaments being less costly than preferences for smaller ornaments. Instead, we suggest that asymmetry in signaling efficacy limits runaway to trait exaggeration.  相似文献   

8.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

9.
Typically males bear the products of sexual selection in the form of ornaments and/or weapons used to compete for and attract females. Secondary sexual traits in females have been thought of as the product of correlated responses to sexual selection on males. However, there is increasing phylogenetic evidence that female secondary sexual traits can arise independently of selection on males, and may be subject to sexual selection. Theoretical models of the evolution of female ornamentation via male mate choice have assumed that females suffer a cost of ornament expression via reduced fecundity, and hence female ornaments are less likely to evolve than male ornaments. In the dung beetle Onthophagus sagittarius, there has been an independent evolutionary origin of horns in females that are qualitatively different from the horns produced by males. We use this system as a model to examine the costs of horn expression for females within a life-history context. We identified a longevity cost of reproduction for females that was independent of horn expression. Large females lived longer, and after controlling for lifespan, had a higher lifetime fecundity, and invested more heavily in maternal provisioning than did small females. We found no evidence of a cost to females of investment in horns. Rather, the rate of increase in fecundity and horn expression with body size were equal, so that absolute horn size provides an accurate indicator of body size and maternal quality. The effects we observe were independent of female contest competition and/or male mate choice, which were excluded in our experimental protocol. However, we speculate on the potential functional contributions female horns might make to female fitness.  相似文献   

10.
A model is used to study quantitatively the impact of a good genes process and direct natural selection on the evolution of a mating preference. The expression of a male display trait is proportional to genetic quality, which is determined by the number of deleterious mutations a male carries throughout his genome. Genetic variances and covariances, including the covariance between the preference and male trait that drives the good genes process, are allowed to evolve under an infinitesimal model. Results suggest that the good genes process generates only weak indirect selection on preferences, with an effective selection intensity of a few percent or less. If preferences are subject to direct natural selection of the intensity observed for other characters, the good genes process alone is not expected to exaggerate the male trait by more than a few phenotypic standard deviations, contrary to what is observed in highly sexually selected species. Good genes can, however, cause substantial exaggeration if preference genes are nearly selectively neutral. Alternatively, direct selection on preference genes, acting on mating behavior itself or on the genes' pleiotropic effects, can cause mating preferences and male display traits to be exaggerated by any degree. Direct selection of preference genes may therefore play an important role in species that show extreme sexual selection.  相似文献   

11.
The last decade has witnessed considerable theoretical and empirical investigation of how male sexual ornaments evolve. This strong male-biased perspective has resulted in the relative neglect of variation in female mate preferences and its consequences for ornament evolution. As sexual selection is a co-evolutionary process between males and females, ignoring variation in females overlooks a key aspect of this process. Here, we review the empirical evidence that female mate preferences, like male ornaments, are condition dependent. We show accumulating support for the hypothesis that high quality females show the strongest mate preference. Nonetheless, this is still an infant field, and we highlight areas in need of more research, both theoretical and empirical. We also examine some of the wider implications of condition-dependent mating decisions and their effect on the strength of sexual selection.  相似文献   

12.
Sexual selection when the female directly benefits   总被引:9,自引:0,他引:9  
Why do females of many species mate with males on the basis of traits apparently detrimental to male survival? The answer may lie in the fact that these male traits are correlated with male condition. We consider the argument that high male condition directly benefits female fecundity and/or viability (e.g. through lower transmission of parasites, improved control of resources, or better paternal care). Using a quantitative genetic model we show how female preferences for male traits that indicate condition can evolve, even if the male traits themselves have deleterious effects on both the male and the female's fecundity. So-called ‘arbitrary preferences’ can spread in this way because male traits subject to sexual selection are often under additional selection to become correlated with condition. At equilibrium the positive effects of male condition on a female's fecundity and the negative effects of the male trait on her fecundity are balanced and the female preference is under stabilizing selection. The male trait will often be correlated with viability, but not with fecundity, even though the preference evolved as a result of differences in male fecundity. The mean fecundity of females is not maximized, and can steadily decline as the male trait and female preference evolve. If the male trait has no direct deleterious effects on female fecundity, as may happen in species with no paternal care, female preferences are under continuous directional selection to increase.  相似文献   

13.
Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.  相似文献   

14.
Recent studies have demonstrated male mate choice for female ornaments in species without sex-role reversal. Despite these empirical findings, little is known about the adaptive dynamics of female signalling, in particular the evolution of male mating preferences. The evolution of traits that signal mate quality is more complex in females than in males because females usually provide the bulk of resources for the developing offspring. Here, we investigate the evolution of male mating preferences using a mathematical model which: (i) specifically accounts for the fact that females must trade-off resources invested in ornaments with reproduction; and (ii) allows male mating preferences to evolve a non-directional shape. The optimal adaptive strategy for males is to develop stabilizing mating preferences for female display traits to avoid females that either invests too many or too few resources in ornamentation. However, the evolutionary stability of this prediction is dependent upon the level of error made by females when allocating resources to either signal or fecundity.  相似文献   

15.
Elaborate, sexually dimorphic traits are widely thought to evolve under sexual selection through female preference, male–male competition, or both. The orangethroat darter (Etheostoma spectabile) is a sexually dichromatic fish in which females exhibit no preferences for male size or coloration. We tested whether these traits affect individual reproductive success in E. spectabile when multiple males are allowed to freely compete for a female. The quality and quantity of male coloration were associated with greater success in maintaining access to the female and in spawning as the primary male (first male to participate). On the other hand, sneaking behavior showed little correlation with coloration. Male breeding coloration in E. spectabile may therefore demonstrate how intrasexual competition can be a predominant factor underlying the evolution of male ornaments.  相似文献   

16.
Abstract.— Cryptic female choice is a potentially important aspect of the sexual selection process. According to the theory of sexual dialectics, postcopulation manipulation of relative male fertilization success can provide an avenue by which females can circumvent attempts by males to control female reproduction. Here I use stochastic models to investigate the evolution of cryptic female choice in populations with and without age structure. In populations without age structure, cryptic female choice will evolve only when (1) precopulatory mate choice by females is inefficient, (2) variation in male fitness is correlated with a trait upon which a female can base her choice of mates, and (3) the cost of multiple mating is not too high. In populations with age structure, similar conditions apply. However, selection sometimes favors females that employ alternative strategies of female choice at different ages. These results help to define the types of biological systems in which we should expect to see the evolution of cryptic female choice. They also illustrate that the evolution of choice strategies in females may be complex and may mirror in some important respects the evolution of alternative mating tactics in males.  相似文献   

17.
  • (i) To find out whether a mating preference could have initially evolved for adaptive reasons, one must determine whether the preferred trait could have provided useful information about mate quality at the time when the preference first arose.
  • (ii) One way to do so is to determine whether the preference evolved before or after the preferred trait. If the preference evolved first, then it cannot initially have served an adaptive function in mate choice, rather it must have arisen by random drift, or as a pleiotropic consequence of selection acting on other aspects of individual perceptual abilities.
  • (iii) A number of studies have shown that females exhibit a mating preference (e.g. for movement) in non-sexual contexts also, which suggests that it may have evolved for reasons unconnected to mate choice. In addition, phylogenetic analyses have revealed that in several cases, females of a certain taxon exhibit a preference for a male trait that is absent in a sister taxon and in outgroup taxa, and that this preference is shared by females of the sister taxon tacking the male trait. The principle of parsimony suggests that such a preference has been inherited from a common ancestor, while the preferred trait arose only once in the lineage exhibiting the trait, i.e. that the preference predates the attractive trait.
  • (iii) While the above evidence indicates that females may possess ‘hidden’ preferences for male traits that are not exhibited by members of their own species, and that in at least some cases males have later evolved display traits that exploit preexisting preferences of this kind, there have been too few historical studies of preference evolution to allow one to assess the frequency of such exploitation. Moreover historical studies cannot provide strong support for the adaptive origin hypothesis, because coevolution of trait and preference (as opposed to exploitation of a pre-existing bias) is compatible with Fisherian models of preference evolution as well as with honest advertisement and the handicap principle. One can conclude only that while some mating preferences did not originally evolve for adaptive reasons, others may or may not have done so.
  • (iv) To find out whether a mating preference is currently maintained by natural selection because the preferred trait provides useful information about mate quality, one must investigate the phenotypic and genotypic correlates of display, and the fitness consequences of mate choice.
  • (v) A review of the published data reveals some support for the ideas of adaptive choice and honest advertisement. In a number of species, preferred display traits are correlated with putative measures of quality, and in a small proportion of these, there is evidence that reproductive success and/or offspring performance are higher for individuals mated to attractive partners. Very few studies report a failure to find any such correlates of display or any such benefits.
  • (vi) While the above result suggests that honest advertisement does sometimes occur in extant populations (which does not necessarily imply that preferred traits originally evolved as reliable indicators of mate quality), the possibility of publication bias means that one cannot assess how widespread it is. More data is needed to remedy this problem, particularly regarding the fitness consequences of mate choice for females. Experimental rather than observational methods are the best means to gather such data. Studies that look for correlates of display, for instance, should rely on experimentally induced rather than natural variation in ‘quality’.
  • (vii) The most common correlates of male display are age and dominance. The latter observation suggests that there may often be interactions between the processes of intersexual and intrasexual selection.
  • (viii) There is considerably more evidence to support the idea of female choice for direct than for indirect benefits. At the same time, however, it is apparent that mating decisions are commonly influenced by more than one measure of quality, so that these two kinds of choice need not be independent. To assess this possibility will require more studies of the relationship between male attractiveness and offspring performance.
  • (ix) Mate choice is frequently based on more than one display trait, and each trait is frequently influenced by more than one aspect of quality. ‘One quality, one trait’ views of honest advertisement are simplistic, and must be abandoned.
  • (x) Honesty in sexual displays is sometimes maintained by cost (as in strategic handicap models) and sometimes, with approximately equal frequency, by physical necessity (as in revealing handicap models). In some cases, both mechanisms are involved in a single signalling system. To further distinguish between these possibilities will require experimental investigation of display cost, based on manipulation of display traits.
  相似文献   

18.
Males and females have opposing interests when it comes to the honesty of signals used in mate choice. The existence of this sexual conflict has long been acknowledged, but its consequences have not been fully investigated. By applying adaptive dynamics methods and individual-based computer simulations to a standard model for good-genes sexual selection, we show that sexual conflict over condition-dependent signaling can prevent the handicap process from ever attaining an evolutionary equilibrium. We outline the parameter conditions and properties of the underlying genetics conducive to nonequilibrium behavior and discuss the potential of such behavior to explain the elaboration and frequent phylogenetic loss of sexually selected traits. We also evaluate its consequences for well-established insights of sexual selection theory previously shown to apply when female mating preference and male ornament expression do converge on stable equilibrium levels. Contrary to equilibrium expectation, a continual change of condition-dependent signaling enables the evolution of a costly preference for a pure epistatic indicator and the evolution of preferences for redundant signals or a large number of independent ornaments. We thus conclude that seemingly general results of sexual selection theory, insofar as these are based on equilibrium considerations, do not extend to cases where nonequilibrium behavior occurs.  相似文献   

19.
Abstract.— Models of Fisher's runaway process show that if there is a cost to female preference, no preference or male trait exaggeration will evolve. Surprisingly, this is true no matter how small the cost, which reveals that these models of Fisher's process are structurally unstable (Bulmer 1989). Here a model of Fisher's runaway process is presented to demonstrate that costly female preference evolves very easily when space is explicitly included in the model. The only requirement is that the optimal male phenotype changes across the species' range. The model shows that the spatial average of the female preference and male trait reach an evolutionary equilibrium that is identical to those of nonspatial models, but that the preference and male trait can deviate greatly from these averages at any point in space. For example, if random mating results in the lowest cost to females, then at equilibrium the spatial average preference will be zero. Nevertheless, there will be some locations at which females prefer males with larger ornaments and others where they prefer males with smaller ornaments. Results also show that the structural instability of nonspatial models of Fisher's process is less of a problem in spatial models. In particular, many of the main qualitative features of cost-free spatial models of Fisher's process remain valid even when there are small costs of female preference. Finally, the model shows that abrupt changes in the optimal male phenotype across space can result in an amplification of this pattern when preference has a small cost, but it can also result in a pattern similar to reproductive character displacement. Which of these occurs depends on the magnitude of the cost of female preference. This suggests that some patterns of reproductive character displacement in nature might be explained simply by sexual selection rather than by hybrid dysgenesis and reinforcement.  相似文献   

20.
Speciation by sexual selection is generally modeled as the coevolution of female preferences and elaborate male ornaments leading to behavioral (sexual) reproductive isolation. One prediction of these models is that female preference for conspecific males should evolve earlier than male preference for conspecific females in sexually dimorphic species with male ornaments. We tested that prediction in darters, a diverse group of freshwater fishes with sexually dimorphic ornamentation. Focusing on the earliest stages of divergence, we tested preference for conspecific mates in males and females of seven closely related species pairs. Contrary to expectation, male preference for conspecific females was significantly greater than female preference for conspecific males. Males in four of the 14 species significantly preferred conspecific females; whereas, females in no species significantly preferred conspecific males. Relationships between the strength of preference for conspecifics and genetic distance revealed no difference in slope between males and females, but a significant difference in intercept, also suggesting that male preference evolves earlier than females’. Our results are consistent with other recent studies in darters and suggest that the coevolution of female preferences and male ornaments may not best explain the earliest stages of behavioral isolation in this lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号